Vol. 82
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-06-25
Metamaterial Inspired Structure with Offset-Fed Microstrip Line for Multi Band Operations
By
Progress In Electromagnetics Research M, Vol. 82, 95-105, 2019
Abstract
A miniaturized rectangle-shaped complementary split ring radiating element with an offset-fed microstrip line is reported for multiband operations. The fabricated antenna with a compact size of 19×19×1.6 mm3 is designed on an FR-4 substrate with loss tangent tanδ = 0.02 and dielectric constant (εr) of 4.4. Multiband and antenna miniaturization are achieved by a complementary split ring radiating element, and it produces an impedance bandwidth of 40 MHz resonance at 3.03 GHz, 40 MHz resonance at 3.66 GHz, and 1470 MHz resonance at 5.5 GHz. The passband behaviour of the complementary split ring radiating element is studied in detail for obtaining multiband abilities of the miniaturized antenna. The metamaterial property of the complementary split ring radiating element is analyzed, by which the negative permittivity (ε) existence and the new resonance frequency are confirmed. The fabricated antenna shows optimum performance at the measured radiation characteristics.
Citation
Balasubramanian Murugeshwari, Raphael Samson Daniel, and Singaravelu Raghavan, "Metamaterial Inspired Structure with Offset-Fed Microstrip Line for Multi Band Operations," Progress In Electromagnetics Research M, Vol. 82, 95-105, 2019.
doi:10.2528/PIERM19031102
References

1. Daniel, R. S., R. Pandeeswari, and S. Raghavan, "A compact metamaterial loaded monopole antenna with offset-fed microstrip line for wireless applications," AEU Int. J. Electron. Commun., Vol. 83, 88-94, 2018.
doi:10.1016/j.aeue.2017.08.030

2. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, Inc., 2006.

3. Pandeeswari, R., "SRR and NBCSRR inspired CPW fed triple band antenna with modified ground plane," Progress In Electromagnetics Research C, Vol. 80, 111-118, 2018.
doi:10.2528/PIERC17101501

4. Xu, H.-X., G.-M. Wang, C.-X. Zhang, and Q. Peng, "Hilbert-shaped complementary single split ring resonator and low-pass filter with ultra-wide stopband, excellent selectivity and low insertion loss," AEU Int. J. Electron. Commun., Vol. 65, No. 11, 901-905, 2011.
doi:10.1016/j.aeue.2011.02.012

5. Karthikeyan, S. S. and R. S. Kshetrimayum, "Compact, harmonic suppressed power divider using open complementary split-ring resonator," Microw. Opt. Technol. Lett., Vol. 53, No. 12, 2897-2899, 2011.
doi:10.1002/mop.26393

6. Phani Kumar, K. V. and S. S. Karthikeyan, "Wideband three section branch line coupler using triple open complementary split ring resonator and open stubs," AEU Int. J. Electron. Commun., Vol. 69, No. 10, 1412-1416, 2015.
doi:10.1016/j.aeue.2015.06.003

7. Daniel, R. S., R. Pandeeswari, and S. Raghavan, "Multiband monopole antenna loaded with complementary split ring resonator and C-shaped slots," AEU Int. J. Electron. Commun., Vol. 75, 8-14, 2017.
doi:10.1016/j.aeue.2017.03.001

8. Daniel, R. S., R. Pandeeswari, and S. Raghavan, "Design and analysis of open complementary split ring resonators loaded monopole antenna for multiband operation," Progress In Electromagnetics Research C, Vol. 78, 173-182, 2017.
doi:10.2528/PIERC17073101

9. Daniel, R. S., R. Pandeeswari, and S. Raghavan, "Offset-fed complementary split ring resonators loaded monopole antenna for multiband operations," AEU Int. J. Electron. Commun., Vol. 78, 72-78, 2017.
doi:10.1016/j.aeue.2017.05.016

10. Lu, M., J. Y. Chin, R. Liu, and T. J. Cui, "A microstrip phase shifter using complementary metamaterials," International Conference on Microwave and Millimeter Wave Technology, 1569-1571, 2008.

11. Rajabloo, H., V. A. Kooshki, and H. Oraizi, "Compact microstrip fractal Koch slot antenna with ELC coupling load for triple band application," AEU Int. J. Electron. Commun., Vol. 73, 144-149, 2017.
doi:10.1016/j.aeue.2016.12.027

12. Daniel, R. S., R. Pandeeswari, and S. Raghavan, "Dual-band monopole antenna loaded with ELC metamaterial resonator forWiMAX andWLAN applications," Applied Physics A Materials Science & Processing, Vol. 124, 570, 2018.
doi:10.1007/s00339-018-1985-7

13. Bakır, M., M. Karaaslan, F. Karadağ, E. Ünal, O. Akgöl, F. Ö. Alkurt, and C. Sabah, "Metamaterial-based energy harvesting for GSM and satellite communication frequency bands," Optical Engineering, Vol. 57, No. 8, 087110, 2018.
doi:10.1117/1.OE.57.8.087110

14. Dincer, F., M. Karaaslan, S. Colak, E. Tetik, O. Akgol, O. Altıntas, and C. Sabah, "Multi-band polarization independent cylindrical metamaterial absorber and sensor application," Modern Physics Letters B, Vol. 30, No. 8, 1650095, 2016.
doi:10.1142/S0217984916500950

15. Altintas, O., E. Unal, O. Akgol, M. Karaaslan, F. Karadag, and C. Sabah, "Design of a wide band metasurface as a linear to circular polarization converter," Modern Physics Letters B, Vol. 31, No. 30, 1750274, 2017.
doi:10.1142/S0217984917502748

16. Daniel, R. S., R. Pandeeswari, and S. Raghavan, "Multiband monopole antenna loaded with complementary split ring resonator and C-shaped slots," AEU Int. J. Electron. Commun., Vol. 75, 8-14, 2017.
doi:10.1016/j.aeue.2017.03.001

17. Daniel, R. S., R. Pandeeswari, and S. Raghavan, "A miniaturized printed monopole antenna loaded with hexagonal complementary split ring resonators for multiband operations," Int. J. RF Microw. Comput. Aided Eng., e21401, 2018.
doi:10.1002/mmce.21401