1. Lim, W., et al. "Dual-mode CMOS power amplifier based on load-impedance modulation," IEEE Microw. Wirel. Compon. Lett., Vol. 28, 1041-1043, 2018.
doi:10.1109/LMWC.2018.2871339 Google Scholar
2. Jeong, G., T. Joo, and S. Hong, "A highly linear and efficient CMOS power amplifier with cascode-cascade configuration," IEEE Microw. Wirel. Compon. Lett., Vol. 27, 596-598, 2017.
doi:10.1109/LMWC.2017.2701327 Google Scholar
3. Kang, S., G. Jeong, and S. Hong, "Study on dynamic body bias controls of RF CMOS cascode power amplifier," IEEE Microw. Wirel. Compon. Lett., Vol. 28, 705-707, 2018.
doi:10.1109/LMWC.2018.2849209 Google Scholar
4. Kang, S., D. Baek, and S. Hong, "A 5-GHz WLAN RF CMOS power amplifier with a parallel-cascoded configuration and an active feedback linearizer," IEEE Trans. Microw. Theory Techn., Vol. 65, 3230-3244, 2017.
doi:10.1109/TMTT.2017.2691766 Google Scholar
5. Park, J., C. Lee, and C. Park, "A quad-band CMOS linear power amplifier for EDGE applications using an anti-phase method to enhance its linearity," IEEE Trans. Circuits Syst. I - Regul. Pap., Vol. 64, 765-776, 2017.
doi:10.1109/TCSI.2016.2620559 Google Scholar
6. Park, J., C. Lee, J. Yoo, and C. Park, "A CMOS antiphase power amplifier with an MGTR technique for mobile applications," IEEE Trans. Microw. Theory Techn., Vol. 65, 4645-4656, 2017.
doi:10.1109/TMTT.2017.2709304 Google Scholar
7. Jin, S., M. Kwon, K. Moon, B. Park, and B. Kim, "Control of IMD asymmetry of CMOS power amplifier for broadband operation using wideband signal," IEEE Trans. Microw. Theory Techn., Vol. 61, 3753-3762, 2013.
doi:10.1109/TMTT.2013.2280116 Google Scholar
8. Jung, S.-C., et al. "A new envelope predistorter with envelope delay taps for memory effect compensation," IEEE Trans. Microw. Theory Techn., Vol. 55, 52-59, 2007.
doi:10.1109/TMTT.2006.886909 Google Scholar
9. Joo, T., B. Koo, and S. Hong, "A WLAN RF CMOS PA with large signal MGTR method," IEEE Trans. Microw. Theory Techn., Vol. 61, 1272-1279, 2013.
doi:10.1109/TMTT.2013.2244228 Google Scholar
10. Joo, T., B. Koo, and S. Hong, "A WLAN RF CMOS PA with adaptive power cells," Proc. IEEE RFIC Symp., 345-348, Seattle, WA, USA, 2013. Google Scholar
11. Kaymaksut, E. and P. Reynaert, "Transformer based uneven Doherty power amplifier in 90 nm CMOS for WLAN applications," IEEE J. Solid-State Circuits, Vol. 47, 1659-1671, 2012.
doi:10.1109/JSSC.2012.2191334 Google Scholar
12. Yin, Y., X. Yu, Z. Wang, and B. Chi, "An efficiency-enhanced stacked 2.4-GHz CMOS power amplifier with mode switching scheme for WLAN applications," IEEE Trans. Microw. Theory Techn., Vol. 63, 672-682, 2015.
doi:10.1109/TMTT.2014.2387838 Google Scholar
13. Jeong, G., S. Kang, T. Joo, and S. Hong, "An integrated dual-mode CMOS power amplifier with linearizing body network," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 64, 1037-1041, 2017.
doi:10.1109/TCSII.2016.2624302 Google Scholar
14. Jin, Y. and S. Hong, "A 2.4-GHz CMOS common-gate combining power amplifier with load impedance adaptor," IEEE Microw. Wirel. Compon. Lett., Vol. 27, 836-838, 2017.
doi:10.1109/LMWC.2017.2734748 Google Scholar
15. Ahn, H., S. Baek, I. Nam, D. An, J. K. Lee, M. Jeong, B.-E. Kim, J. Choi, and O. Lee, "A fully integrated dual-mode CMOS power amplifier with an autotransformer-based parallel combining transformer," IEEE Microw. Wirel. Compon. Lett., Vol. 27, 833-835, 2017.
doi:10.1109/LMWC.2017.2734762 Google Scholar
16. Yoo, J., C. Lee, I. Kang, and C. Park, "2.4-GHz CMOS linear power amplifier for IEEE 802.11n WLAN applications," Microw. Opt. Technol. Lett., Vol. 59, 546-550, 2017.
doi:10.1002/mop.30343 Google Scholar