1. Salisbury, W. W., Absorbent body for electromagnetic waves, U.S. Patent 2599944, filled May 11, 1943, granted June 10, 1952.
2. Cheldavi, A. and M. Kamarei, "Optimum design of n sheet capacitive Jaumann absorber using genetic algorithm," IEEE International Symposium on Antenna and Propagation, Vol. 4, 2296-2299, Montreal, Quebec, Canada, July 13-18, 1997. Google Scholar
3. Chambers, B. and A. Tennant, "Active Dallenbach radar absorber," IEEE International Symposium on Antennas and Propagation, 381-384, Albuquerque, New Mexico, USA, July 9-14, 2006. Google Scholar
4. Ishihara, K. and Y. Tomiyama, Electromagnetically anechoic chamber and shield structure therfor, US Patent 5134405, filled February 27, 1989, granted July 28, 1992.
5. Singh, P., V. K. Babbar, A. Razdan, R. K. Puri, and T. C. Goel, "Complex permittivity, permeability, and X-band microwave absorption of CaCoTi ferrite composites," Journal of Applied Physics, Vol. 87, No. 9, 4362-4366, 2000.
doi:10.1063/1.373079 Google Scholar
6. Parida, R. C., D. Singh, and N. K. Agarwal, "Implementation of multilayer ferrite radar absorbing coating with genetic algorithm for radar cross-section reduction at X-band," Indian Journal of Radio and Space Physics, Vol. 36, 145-152, 2007. Google Scholar
7. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2006.
8. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver super lens," Science, Vol. 308, 534-537, 2005.
doi:10.1126/science.1108759 Google Scholar
9. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628 Google Scholar
10. Mishra, N. and R. K. Chaudhary, "A miniaturized ZOR antenna with enhanced bandwidth for WiMAX applications," Microwave and Optical Technology Letters, Vol. 58, 71-75, 2016.
doi:10.1002/mop.29494 Google Scholar
11. Fouad, M. A. and M. A. Abdalla, "New π-T generalised metamaterial negative refractive index transmission line for a compact coplanar waveguide triple band pass filter applications," IET Microw. Antennas Propag., Vol. 8, 1097-1104, 2014.
doi:10.1049/iet-map.2013.0698 Google Scholar
12. Akgol, O., O. Altintas, E. E. Dalkilinc, E. Unal, M. Karaaslan, and C. Sabah, "Metamaterial absorber-based multisensor applications using a meander-line resonator," Optical Engineering, Vol. 56, No. 8, 087104, 2017.
doi:10.1117/1.OE.56.8.087104 Google Scholar
13. Bakir, M., M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, "Microwave metamaterial absorber for sensing applications," Opto-Electronics Review, Vol. 25, No. 4, 318-325, 2017.
doi:10.1016/j.opelre.2017.10.002 Google Scholar
14. Unal, E., M. Bagmanci, M. Karaaslan, O. Akgol, H. T. Arat, and C. Sabah, "Zinc oxide-tungsten-based pyramids in construction of ultra-broadband metamaterial absorber for solar energy harvesting," IET Optoelectronics, Vol. 11, No. 3, 114-120, 2017.
doi:10.1049/iet-opt.2016.0138 Google Scholar
15. Bagmanci, M., M. Karaaslan, O. Altintas, F. Karadag, E. Tetik, and M. Bakir, "Wideband metamaterial absorber based on CRRS with lumped elements for microwave energy harvesting," Journal of Microwave Power and Electromagnetic Energy, Vol. 52, No. 1, 45-59, 2018.
doi:10.1080/08327823.2017.1405471 Google Scholar
16. Bilotti, F., L. Nucci, and L. Vegni, "An SRR based microwave absorber," Microwave and Optical Technology Letters, Vol. 48, No. 11, 2171-2175, 2006.
doi:10.1002/mop.21891 Google Scholar
17. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
18. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Phys. Rev. B, Vol. 80, 033108, 2009.
doi:10.1103/PhysRevB.80.033108 Google Scholar
19. Thummaluru, S. R., N. Mishra, and R. K. Chaudhary, "Design and analysis of an ultra-thin X-band polarization --- Insensitive metamaterial absorber," Microwave and Optical Technology Letters, Vol. 58, 2481-2485, 2016.
doi:10.1002/mop.30071 Google Scholar
20. Kalraiya, S., R. K. Chaudhary, M. A. Abdalla, and R. K. Gangwar, "Polarization and incident angle independent metasurface absorber for X-band application, material research express," IOP Sciences, Vol. 6, No. 4, 045802, 2019. Google Scholar
21. Zhai, H., Z. Li, L. Li, and C. Liang, "A dual-band wide-angle polarization-insensitive ultrathin gigahertz metamaterial absorber," Microwave and Optical Technology Letters, Vol. 55, 1606-1609, 2013.
doi:10.1002/mop.27622 Google Scholar
22. Kumari, K., N. Mishra, and R. K. Chaudhary, "An ultra-thin compact polarization insensitive dual band absorber based on metamaterial for X-band applications," Microwave and Optical Technology Letters, Vol. 59, No. 10, 2664-2669, 2017.
doi:10.1002/mop.30797 Google Scholar
23. Li, H., L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, "Ultrathin multiband gigahertz metamaterial absorbers," Journal of Applied Physics, Vol. 110, 014909, 2011.
doi:10.1063/1.3608246 Google Scholar
24. Bhattacharyya, S., S. Ghosh, and K. V. Srivastava, "Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band," Journal of Applied Physics, Vol. 114, 094514, 2013.
doi:10.1063/1.4820569 Google Scholar
25. Bian, B., S. Liu, S. Wang, X. K. Kong, H. Zhang, B. Ma, and H. Yang, "Novel triple band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber," Journal of Applied Physics, Vol. 114, 194511, 2013.
doi:10.1063/1.4832785 Google Scholar
26. Thummaluru, S. R., N. Mishra, and R. K. Chaudhary, "Design and analysis of an ultrathin triple-band polarization independent metamaterial absorbe," AEU | International Journal of Electronics and Communications, Vol. 82, 508-515, 2017. Google Scholar
27. Lee, J. and S. Lim, "Bandwidth enhanced and polarization-insensitive metamaterial absorber using double resonance," Electronics Lett., 47, 2011.
doi:10.1063/1.3692178 Google Scholar
28. Ding, F., Y. Cui, X. Ge, Y. Jin, and S. He, "Ultra-broadband microwave metamaterial absorber," Applied Physics Letters, Vol. 100, 103506, 2012.
doi:10.1002/mop.28733 Google Scholar
29. Soheilifar, M. R. and R. A. Sadeghzadeh, "Design, simulation, and fabrication of an ultrathin planar microwave metamaterial absorber," Microwave and Optical Technology Letters, Vol. 56, 2916-2922, 2014.
doi:10.1002/mop.28122 Google Scholar
30. Ghosh, S., S. Bhattacharyya, and K. V. Srivastava, "Bandwidth enhancement of an ultrathin polarization insensitive metamaterial absorber," Microwave and Optical Technology Letters, Vol. 56, 350-355, 2014.
doi:10.1109/ACCESS.2017.2675439 Google Scholar
31. Mishra, N., D. K. Choudhary, R. Chowdhury, K. Kumari, and R. K. Chaudhary, "An investigation on compact ultra-thin triple band polarization independent metamaterial absorber for microwave frequency applications," IEEE Access, Vol. 5, 4370-4376, 2017.
doi:10.1109/TAP.2013.2290791 Google Scholar
32. Mehdipour, A., T. A. Denidni, and A. R. Sebak, "Multi-band miniaturized antenna loaded by ZOR and CSRR metamaterial structures with monopolar radiation pattern," IEEE Transactions on Antennas and Propagation, Vol. 62, 555-562, 2014.
doi:10.1103/PhysRevE.71.036617 Google Scholar
33. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physics Review E, Vol. 71, 036617, 2005. Google Scholar