Vol. 84
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-08-24
Flexible Analytical Curve-Based Dual-Band Antenna for Wireless Body Area Networks
By
Progress In Electromagnetics Research M, Vol. 84, 73-84, 2019
Abstract
In this paper, a novel wearable inkjet printed dual-band antenna is presented, which works at 2.45 GHz and 5.8 GHz for wireless body area network applications. The proposed antenna geometry is composed of two printed monopole elements, which are constructed from an analytical profile of an exponentially-decaying sinusoidal curve. The analytically parameterized curve allows for constructing on demand irregular and unique shaped miniaturized radiators. The antenna system is printed on a transparent flexible polyethylene terephthalate (PET) film. The wearable dual-band printed antenna with an overall size 45 x 40 x 0.135 mm3 is compact, light weight, and low profile, making it a suitable candidate for wireless body area network applications, when limited volume space for the worn unit is a requirement. Good agreement between numerical and measured data is achieved. Moreover, the overall far- field radiation performance of the wearable dual-band antenna is satisfactory, with measured peak gains of 1.81 dBi and 3.92 dBi, and a total computed efficiencies of 81% and 82% at 2.45 GHz and 5.8 GHz, respectively. The effect of bending the wearable antenna structure is also investigated, and only slight performance variations are observed.
Citation
Mohammed M. Bait-Suwailam Akram Alomainy , "Flexible Analytical Curve-Based Dual-Band Antenna for Wireless Body Area Networks," Progress In Electromagnetics Research M, Vol. 84, 73-84, 2019.
doi:10.2528/PIERM19051004
http://www.jpier.org/PIERM/pier.php?paper=19051004
References

1. Hall, P. S. and Y. Hao, "Antennas and propagation for body centric communications," 2006 First European Conference on Antennas and Propagation, 1-7, Nov. 2006.

2. Salonen, P. and J. Rantanen, "A dual-band and wide-band antenna on exible substrate for smart clothing," Conference of the IEEE Industrial Electronics Society (IECON), Vol. 1, 125-130, Feb. 2001.

3. Salonen, P. and A. Hume, "A novel fabric WLAN antenna for wearable applications," 2003 IEEE Antennas and Propagation Society Symposium, 700-703, 2003.

4. De Cos, M. E. and F. Las-Heras, "Polypropylene-based dual-band CPW-Fed monopole antenna [Antenna Applications Corner]," IEEE Antennas and Propagation Magazine, Vol. 55, No. 3, 264-273, Jun. 2013.
doi:10.1109/MAP.2013.6586683

5. Zhu, S. and R. Langley, "Dual-band wearable textile antenna on an EBG substrate," IEEE Trans. Antennas Propag., Vol. 57, 926-935, 2009.
doi:10.1109/TAP.2009.2014527

6. Chauraya, A., W. G. Whittow, J. Vardaxoglou, Y. Li, R. Torah, K. Yang, S. Beeby, and J. Tudor, "Inkjet printed dipole antennas on textiles for wearable communications," IET Microwaves, Antennas and Propagation, Vol. 7, No. 9, 760-767, 2013.
doi:10.1049/iet-map.2013.0076

7. Rida, R. V. M. A., L. Yang, and M. Tenzeries, "Conductive inkjet-printed antennas on low-cost paper-based substrates for RFID and wsn applications," IEEE Antennas and Propagation Magazine, Vol. 51, No. 3, 13-23, 2009.
doi:10.1109/MAP.2009.5251188

8. Hettak, K., T. Ross, R. James, A. Momciu, and J. Wight, "Flexible polyethylene terephthalate-based inkjet printed CPW-fed monopole antenna for 60 GHz ISM applications," 2013 European Microwave Integrated Circuit Conference, 476-479, Oct. 2013.

9. Hertleer, L. V. C., H. Rogier, and L. V. Langenhove, "A textile antenna for off-body communication integrated into protective clothing for fire-fighters," IEEE Trans. Antennas Propag., Vol. 57, 919-925, 2009.
doi:10.1109/TAP.2009.2014574

10. Rida, A., G. Shaker, F. Nasri, T. Reynolds, S. Nikolaou, and M. Tenzeris, "Inkjet printing of dual band conformal antenna for use in WiFi frequency bands," 2010 IEEE Radio and Wireless Symposium (RWS), 65-67, Jan. 2010.
doi:10.1109/RWS.2010.5434212

11. Hassan, A., S. Ali, G. Hassan, J. Bae, and C. Lee, "Inkjet-printed antenna on thin PET substrate for dual band Wi-Fi communications," Microsystem Technologies, Vol. 23, No. 8, 3701-3709, Aug. 2016.
doi:10.1007/s00542-016-3113-y

12. Sundarsingh, E., S. Velan, M. Kanagasabai, A. Sarma, C. Raviteja, and M. Alsath, "Polygon-shaped slotted dual-band antenna for wearable applications," IEEE Antennas and Wireless Prop. Letters, Vol. 13, 611-614, 2014.
doi:10.1109/LAWP.2014.2313133

13. Haerinia, M. and S. Noghanian, "A printed wearable dual-band antenna for wireless power transfer," Sensors, Vol. 19, 1732:10, 2019.

14. Badhai, R. K. and N. Gupta, "Design of wideband inverted Sinc shaped monopole antenna," 2014 Fourth International Conference on Communication Systems and Network Technologies, 34-37, Apr. 2014.
doi:10.1109/CSNT.2014.16

15. Verma, S. and P. Kumar, "Compact arc-shaped antenna with binomial curved conductor-backed plane for multiband wireless applications," IET Microwaves, Antennas Propagation, Vol. 9, No. 4, 351-359, 2015.
doi:10.1049/iet-map.2014.0427

16. Gianvittorio, J. P. and Y. Rahmat-Samii, "Fractal antennas: A novel antenna miniaturization technique, and applications," IEEE Antennas and Propagation Magazine, Vol. 44, No. 1, 20-36, Feb. 2002.
doi:10.1109/74.997888

17. Jerzy Guterman, A. A. M. and C. Peixeiro, "Microstrip fractal antennas for multistandard terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 351-354, 2004.
doi:10.1109/LAWP.2004.840253

18. Chien, H., C. Sim, and C. Lee, "Dual-band meander monopole antenna for WLAN operation in laptop computer," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 694-697, 2013.
doi:10.1109/LAWP.2013.2263373

19. Georget, E., R. Abdeddaim, and P. Sabouroux, "Analytical, simulation and measurement studies of a dual-band open-sleeve curved meander line antenna on a exible substrate," Progress In Electromagnetics Research, Vol. 145, 49-57, 2014.
doi:10.2528/PIER13122004

20. Kakoyiannis, C. G. and P. Constantinou, "Radiation poperties and ground-dependent response of compact printed sinusoidal antennas and arrays," IET Microwaves, Antennas and Propagation, Vol. 4, No. 5, 629-642, May 2010.
doi:10.1049/iet-map.2009.0162

21. Kakoyiannis, C. G. and P. Constantinou, "Compact WSN antennas of analytic geometry based on Chebyshev polynomials," 2012. Loughborough Antennas Propagation Conference (LAPC), 1-6, Nov. 2012.

22. Yang, L., A. Rida, R. Vyas, and M. M. Tentzeris, "RFID tag and RF structures on a paper substrate using Inkjet-printing technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2894-2901, Dec. 2007.
doi:10.1109/TMTT.2007.909886

23. Shaker, G., S. Safavi-Naeini, N. Sangary, and M. M. Tentzeris, "Inkjet printing of ultrawideband (UWB) antennas on paper-based substrates," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 111-114, 2011.
doi:10.1109/LAWP.2011.2106754

24., , Institute of Applied Physics. (accessed on 20 June, 2019), [Online], Available: http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.

25., , Institute of Electrical and Electronics Engineers (IEEE), IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz (IEEE Std C95.1-2005), IEEE: Piscataway, NJ, USA, 2006.
doi:10.1109/LAWP.2011.2106754