1. Achouri, K. and C. Caloz, "Space-wave routing via surface waves using a metasurface system," Sci. Rep., Vol. 8, No. 1, 1-9, 2018. Google Scholar
2. Zhu, W., F. Xiao, M. Kang, and M. Premaratne, "Coherent perfect absorption in an all-dielectric metasurface," Appl. Phys. Lett., Vol. 108, No. 12, 1-5, 2016. Google Scholar
3. Wu, K., P. Coquet, Q. J. Wang, and P. Genevet, "Modelling of free-form conformal metasurfaces," Nat. Commun., Vol. 9, No. 1, 1-8, 2018. Google Scholar
4. Akgol, O., E. Ünal, O. Altintas, M. Karaaslan, F. Karadag, and C. Sabah, "Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal," Optik, Vol. 161, No. 10 1968, 12-19, 2018. Google Scholar
5. Deng, Z.-L. and G. Li, "Metasurface optical holography," Mater. Today Phys., Vol. 3, No. 5 9 2011, 16-32, 2017. Google Scholar
6. Jafar-Zanjani, S., S. Inampudi, and H. Mosallaei, "Adaptive genetic algorithm for optical metasurfaces design," Sci. Rep., Vol. 8, No. 1, 1-16, 2018. Google Scholar
7. Nye, N. S., A. Swisher, C. Bungay, et al. "Design of broadband anti-reflective metasurfaces based on an effective medium approach," Proc. SPIE 10181, Advanced Optics for Defense Applications: UV through LWIR II, 101810J, Anaheim, California, United States, 2017. Google Scholar
8. Pulido-Mancera, L., P. T. Bowen, M. F. Imani, et al. "Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling," Phys. Rev. B, Vol. 96, No. 235402, 1-14, 2017. Google Scholar
9. Wu, K., P. Coquet, Q. J. Wang, et al. "Modelling of free-form conformal metasurfaces," Nat. Commun., Vol. 9, No. 3494, 1-8, 2018. Google Scholar
10. Cui, T. J., M. Q. Qi, X. Wan, J. Zhao, Q. Cheng, K. T. Lee, J. Y. Lee, S. Seo, L. J. Guo, Z. Zhang, Z. You, and D. Chu, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light Sci. Appl., Vol. 3, No. 10, 1-9, 2014. Google Scholar
11. Feng, Y., K. Chen, B. Zhu, J. Zhao, T. Jiang, and L. Cui, "Coding metasurface for broadband microwave scattering reduction with optical transparency," Opt. Express., Vol. 25, No. 5, 5571-5579, 2017. Google Scholar
12. Ünal, E. and G. Altıntarla, "Smart monopole antenna with pattern and frequency reconfiguration characteristics based on programmable metasurface," Int. J. RF Microw. Comput. Eng., e21805, 2019. Google Scholar
13. Baudrand, H. and D. Bajon, "Equivalent circuit representation for integral formulations of electromagnetic problems," Int. J. Numer Model Electron Networks, Devices Fields, Vol. 15, No. 1, 23-57, 2002. Google Scholar
14. Hajji, M., M. Aidi, H. Krraoui, and T. Aguili, "Hybridization of generalized Po and Mom-Gec method for electromagnetic study of complex structures: Application to reflectarrays," Progress In Electromagnetics Research M, Vol. 45, 35-49, 2016. Google Scholar
15. Aidi, M., M. Hajji, B. Hamdi, and T. Aguili, "Graphene nanoribbon modeling based on MoM-GEC method for antenna applications in the terahertz range," 2015 World Symposium on Mechatronics Engineering and Applied Physics (WSMEAP), Vol. 2, 1-4, Sousse, 2015. Google Scholar
16. Ziegler, K., "Robust transport properties in graphene," Phys. Rev. Lett., Vol. 97, No. 26, 1-5, 2006. Google Scholar
17. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., John Waley and Sons, Inc., 2016.