1. Zarko, V. E. and A. A. Gromov, Energetic Nanomaterials: Synthesis, Characterization, and Application, Elsevier, 2016.
2. Sundaram, D. S., V. Yang, and E. Zarko, "Combustion of nano aluminum particles (review)," Comb. Expl. Shock. Waves, Vol. 51, No. 2, 173-196, 2015.
doi:10.1134/S0010508215020045 Google Scholar
3. Muthu Gnana Theresa Nathan, D., S. Jacob Melvin Boby, P. Basu, R. Mahesh, S. Harish, S. Joseph, and P. Sagayaraj, "One-pot hydrothermal preparation of Cu2O-CuO/rGO nanocomposites with enhanced electrochemical performance for supercapacitor applications," Appl. Surf. Sci., Vol. 449, 474-484, 2018. Google Scholar
4. Wilmański, A., M. Bućko, Z. Pedzich, and J. Szczerba, "Salt-assisted SHS synthesis of aluminium nitride powders for refractory applications," J. Mater. Sci. Chem. Eng., Vol. 2, No. 10, 26-31, 2014. Google Scholar
5. Jeong, T., K. H. Kim, S. J. Lee, S. H. Lee, S. R. Jeon, S. H. Lim, J. H. Baek, and J. K. Lee, "Aluminum nitride ceramic substrates-bonded vertical light-emitting diodes," IEEE Photon. Technol. Lett., Vol. 21, No. S3, 890-892, 2009.
doi:10.1109/LPT.2009.2020061 Google Scholar
6. Hunt, W. H., "New directions in aluminum-based P/M materials for automotive applications," Int. J. Powd. Metal., Vol. 36, No. 6, 50-56, 2000. Google Scholar
7. Ilyin, A. P., L. O. Root, and A. V. Mostovshchikov, "Application of aluminum nanopowder for pure hydrogen production," Key Eng. Mater., Vol. 712, 261-266, 2016.
doi:10.4028/www.scientific.net/KEM.712.261 Google Scholar
8. Tan, W. S., V. Bousquet, M. Kauer, K. Takahashi, and J. Heffernan, "InGaN-based blue-violet laser diodes using AlN as the electrical insulator," Jpn. J. Appl. Phys., Vol. 48, No. 7R, 072102, 2009.
doi:10.1143/JJAP.48.072102 Google Scholar
9. Aruna, S. T. and A. S. Mukasyan, "Combustion synthesis and nanomaterials," Curr. Opin. Solid State Mater. Sci., Vol. 12, 44-50, 2008.
doi:10.1016/j.cossms.2008.12.002 Google Scholar
10. Li, L., A. P. Ilyin, F. A. Gubarev, A. V. Mostovshchikov, and M. S. Klenovskii, "Study of self-propagating high-temperature synthesis of aluminium nitride using a laser monitor," Ceram. Int., Vol. 44, No. 16, 19800-19808, 2018.
doi:10.1016/j.ceramint.2018.07.237 Google Scholar
11. Gubarev, F. A., M. S. Klenovskii, L. Li, A. V. Mostovshchikov, and A. P. Ilyin, "High-speed visualization of nanopowder combustion in air," Opt. Pura Apl., Vol. 51, No. 4, 51003:1-7, 2018.
doi:10.7149/OPA.51.4.51003 Google Scholar
12. Gubarev, F. A., A. V. Mostovshchikov, M. S. Klenovskii, A. P. Il'in, and L. Li, "Copper bromide laser monitor for combustion processes visualization," 2016 Progress In Electromagnetic Research Symposium (PIERS), 2666-2670, Shanghai, China, August 8-11, 2016. Google Scholar
13. McNesby, K. L., B. E. Homan, R. A. Benjamin, V. M. Boyle, J. M. Densmore, and M. M. Biss, "Invited article: Quantitative imaging of explosions with high-speed cameras," Rev. Sci. Instrum., Vol. 87, No. 5, 051301, 2016.
doi:10.1063/1.4949520 Google Scholar
14. Abdel-Hafez, A. A., M. W. Brodt, J. R. Carney, and J. M. Lightstone, "Laser dispersion and ignition of metal fuel particles," Rev. Sci. Instrum., Vol. 82, No. 6, 064101, 2011.
doi:10.1063/1.3598341 Google Scholar
15. Chen, Y., D. R. Guildenbecher, K. N. G. Hoffmeister, M. A.Cooper, H. L. Stauffacher, M. S.Oliver, and E. B. Washburn, "Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry," Combust. Flame, Vol. 82, 225-237, 2017.
doi:10.1016/j.combustflame.2017.04.016 Google Scholar
16. Plantier, K. B., M. L. Pantoya, and A. E. Gash, "Combustion wave speeds of nanocomposite Al/Fe2O3: The effects of Fe2O3 particle synthesis technique," Combust. Flame, Vol. 140, No. 4, 299-309, 2005.
doi:10.1016/j.combustflame.2004.10.009 Google Scholar
17. Lynch, P., G. Fiore, H. Krier, and N. Glumac, "Gas-phase reaction in nanoaluminum combustion," Combust. Sci. Technol., Vol. 182, No. 7, 842-857, 2010.
doi:10.1080/00102200903341561 Google Scholar
18. Little, C. E., Metal Vapor Lasers: Physics, Engineering and Applications, John Willey & Sons Ltd., 1999.
19. Kazaryan, M. A., V. M. Batenin, V. V. Buchanov, A. M. Boichenko, I. I. Klimovskii, and E. I. Molodykh, High Brightness Metal Vapor Lasers: Physics and Applications, CRC Press, 2017.
20. Withford, M. J., D. J. W. Brown, R. P. Mildren, R. J. Carman, G. D. Marshall, and J. A. Piper, "Advances in copper laser technology: Kinetic enhancement," Prog. Quant. Electron., Vol. 28, No. 3-4, 165-196, 2004.
doi:10.1016/j.pquantelec.2003.12.001 Google Scholar
21. Biswal, R., G. K. Mishra, P. K. Agrawal, S. V. Nakhe, and S. K. Dixit, "Studies on the spectral purity of copper-hydrogen bromide laser radiations," Appl. Opt., Vol. 52, No. 14, 3269-3278, 2013.
doi:10.1364/AO.52.003269 Google Scholar
22. Gubarev, F. A., L. Li, M. S. Klenovskii, and D. V. Shiyanov, "Spatial-temporal gain distribution of a CuBr vapor brightness amplifier," Appl. Phys. B, Vol. 122, 284, 2016.
doi:10.1007/s00340-016-6559-9 Google Scholar
23. Nekhoroshev, V. O., V. F. Fedorov, G. S. Evtushenko, and S. N. Torgaev, "Copper bromide vapour laser with a pulse repetition rate up to 700 kHz," Quantum Electron., Vol. 42, No. 10, 877-879, 2012.
doi:10.1070/QE2012v042n10ABEH014897 Google Scholar
24. Gubarev, F. A., V. F. Fedorov, K. V. Fedorov, D. V. Shiyanov, and G. S. Evtushenko, "Copper bromide vapour laser with an output pulse duration of up to 320 ns," Quantum Electron., Vol. 46, No. 1, 57-60, 2016.
doi:10.1070/QE2016v046n01ABEH015707 Google Scholar
25. Astadjov, D. N., K. D. Dimitrov, D. R. Jones, V. K. Kirkov, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, "Copper bromide laser of 120 W average output power," IEEE J. Quantum Electron., Vol. 33, No. 5, 705-709, 1997.
doi:10.1109/3.572143 Google Scholar
26. Skripnichenko, A. S., A. N. Soldatov, and N. A. Yudin, "Method of two-pulse frequency regulation of copper-vapor laser parameters," J. Russ. Las. Res., Vol. 16, No. 2, 134-137, 1995.
doi:10.1007/BF02580866 Google Scholar
27. Petrash, G. G., Optical Systems with Brightness Amplifiers, Nauka, 1991.
28. Buzhinsky, R. O., V. V. Savransky, K. I. Zemskov, A. A. Isaev, and O. I. Buzhinsky, "Observation of objects under intense plasma background illumination," Plasma Phys. Rep., Vol. 36, No. 13, 1269-1271, 2010.
doi:10.1134/S1063780X10130295 Google Scholar
29. Abramov, D. V., S. M. Arakelian, A. F. Galkin, I. I. Klimovskii, A. O. Kucherik, and V. G. Prokoshev, "On the possibility of studying the temporal evolution of a surface relief directly during exposure to high-power radiation," Quantum Electron., Vol. 36, No. 6, 569-575, 2006.
doi:10.1070/QE2006v036n06ABEH006579 Google Scholar
30. Kuznetsov, A. P., R. O. Buzhinskij, K. L. Gubskii, A. S. Savjolov, S. A. Sarantsev, and A. N. Terekhin, "Visualization of plasma-induced processes by a projection system with a Cu-laser-based brightness amplifier," Plasma Phys. Rep., Vol. 36, No. 5, 428-437, 2010.
doi:10.1134/S1063780X10050090 Google Scholar
31. Gubarev, F. A., M. S. Klenovskii, and L. Li, "A mirror based scheme laser projection microscope," IOP Conf. Series: Materials Science and Engineering, Vol. 81, 012016, 2016.
doi:10.1088/1757-899X/124/1/012016 Google Scholar
32. Mironov, E. G., Z. Li, H. T. Hattori, K. Vora, H. H. Tan, and C. Jagadish, "Titanium nano-antenna for high-power pulsed operation," J. Lightwave Technol., Vol. 31, No. 15, 2459-2466, 2013.
doi:10.1109/JLT.2013.2261281 Google Scholar