Vol. 84
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-08-16
Estimating Electric Parameters of Nonhomogeneous Laminar Materials Using Differo-Integral Method
By
Progress In Electromagnetics Research M, Vol. 84, 21-30, 2019
Abstract
The electrical network model and differo-integral method (D-IM) were applied to electrical parameters estimation of nonhomogeneous composite materials. The laminar composite is arranged of conductive unit cells with adjustable geometry. Modification of unit cell's internal geometry results in change of composite's effective properties. Stationary electric and magnetic fields of exemplary structures were numerically analyzed. Theoretical computations along with network model were verified by experimental measurements of 10 fabricated samples. Obtained results indicate that D-IM is a valuable tool for qualitative and quantitative estimation of electrical parameters.
Citation
Adam Steckiewicz Boguslaw Butrylo , "Estimating Electric Parameters of Nonhomogeneous Laminar Materials Using Differo-Integral Method," Progress In Electromagnetics Research M, Vol. 84, 21-30, 2019.
doi:10.2528/PIERM19060204
http://www.jpier.org/PIERM/pier.php?paper=19060204
References

1. Han, T. and C.-W. Qiu, "Transformation Laplacian metamaterials: recent advances in manipulating thermal and DC fields," J. Opt., Vol. 18, No. 4, 1-13, 2016.
doi:10.1088/2040-8978/18/4/044003

2. Navau, C., R. Mach-Batlle, A. Parra, J. Prat-Camps, S. Laut, N. Del-Valle, and A. Sanchez, "Enhancing the sensitivity of magnetic sensors by 3D metamaterial shells," Sci. Rep., Vol. 7, 1-9, 2017.

3. Djuric, S., "Koch fractal inductors printed on flexible substrate," Electron. Lett., Vol. 52, No. 8, 581-583, 2016.
doi:10.1049/el.2015.3483

4. Ziaja, J., M. Jaroszewki, and M. Lewandowski, "EMI shielding using composite materials with two sources magnetron sputtering," IOP Conf. Ser.: Mater. Sci. and Eng., Vol. 13, No. 1, 012010, 2016.
doi:10.1088/1757-899X/113/1/012010

5. Taghizadeh, M., M. Maddahali, and R. Abed, "Novel band-pass frequency selective surface with stable response," 8th Int. Symp. on Telecommun. (IST'2016), 428-431, Tehran, Iran, September 2016.
doi:10.1109/ISTEL.2016.7881856

6. Xu, G., J. Zhang, X. Zang, O. Sugihara, H. Zhao, and B. Cai, "0.1-20 THz ultra-broadband perfect absorber via a flat multi-layer structure," Opt. Express, Vol. 24, No. 20, 2016.

7. Moore, R., Electromagnetic Composites Handbook, Ch. 5, McGraw-Hill Education, 2016.

8. Zareba, M., "Application of Duhamel’s theorem in the analysis of the thermal field of a rectangular busbar," J. of Electr. Eng. and Technol., Vol. 14, No. 1, 2019.
doi:10.1007/s42835-018-00045-1

9. Zhong, S.-L. and Z.-M. Dang, "Prediction on effective permittivity of 0-3 connectivity particle/polymer composites at low concentration with finite element method," IEEE Tran. on Dielectr. and Electr. Insul., Vol. 25, No. 6, 2018.

10. Lin, Z., X. Zhao, Y. Zhang, and H. Liu, "Higher order method of moments analysis of metallic waveguides loaded with composite metallic and dielectric structures," IEEE Tran. on Antennas and Propag., Vol. 66, No. 9, 2018.

11. Choroszucho, A., "Analysis of the influence of the complex structure of clay hollow bricks on the values of electric field intensity by using the FDTD method," Arch. of Electr. Eng., Vol. 65, No. 4, 2016.

12. Steckiewicz, A. and B. Butrylo, "An application of PSO algorithm for multi-criteria geometry optimization of printed low-pass filters based on conductive periodic structures," Proc. of SPIE Conf. on Photonics Appl. in Astron., Commun., Ind., and High Energy Phys. Exp., Wilga, Poland, May-June 2017.