1. Al Takach, A., F. Ndagijimana, J. Jomaah, and M. Al-Husseini, "3D-printed low-cost and lightweight TEM cell," IEEE International Conference on High Performance Computing & Simulation (HPCS), 47-50, 2018. Google Scholar
2. Al Takach, A., F. Ndagijimana, J. Jomaah, and M. Al-Husseini, "Position optimization for probe calibration enhancement inside the TEM cell," IEEE International Multidisciplinary Conference on Engineering Technology (IMCET), 1-5, 2018. Google Scholar
3. Bongard, F., et al. "3D-printed Ka-band waveguide array antenna for mobile SATCOM applications," IEEE 11th European Conference on Antennas and Propagation (EUCAP), 579-583, 2017. Google Scholar
4. Farooqui, M. F. and A. Shamim, "3D inkjet printed disposable environmental monitoring wireless sensor node," IEEE MTT-S International Microwave Symposium (IMS), 1379-1382, 2017.
doi:10.1109/MWSYM.2017.8058872 Google Scholar
5. Kronberger, R. and P. Soboll, "New 3D printed microwave metamaterial absorbers with conductive printing materials," IEEE 46th European Microwave Conference (EuMC), 596-599, 2016. Google Scholar
6. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, 2004.
doi:10.1002/0470020466
7. Shwaykani, H., A. El-Hajj, J. Costantine, F. A. Asadallah, and M. Al-Husseini, "Dielectric spectroscopy for planar materials using guided and unguided electromagnetic waves," IEEE Middle East and North Africa Communications Conference (MENACOMM), 1-5, 2018. Google Scholar
8. Padmanabhan, S., P. Kirby, J. Daniel, and L. Dunleavy, "Accurate broadband on-wafer SOLT calibrations with complex load and thru models," IEEE 61st ARFTG Conference Digest, 5-10, 2003. Google Scholar
9. Vicente, A. N., G. M. Dip, and C. Junqueira, "The step by step development of NRW method," SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 738-742, 2011.
doi:10.1109/IMOC.2011.6169318 Google Scholar
10. Rothwell, E. J., J. L. Frasch, S. M. Ellison, P. Chahal, and R. O. Ouedraogo, "Analysis of the Nicolson-Ross-Weir method for characterizing the electromagnetic properties of engineered materials," Progress In Electromagnetics Research, Vol. 157, 31-47, 2016.
doi:10.2528/PIER16071706 Google Scholar
11. Kuek, C. Y., Measurement of Dielectric Material Properties, Rohde & Schwarz, 2012.
12. Chen, X., T. M. Grzegorczyk, B. I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 1, 016608, 2004.
doi:10.1103/PhysRevE.70.016608 Google Scholar
13. Arslanagić, S., T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, "A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization," IEEE Antennas and Propagation Magazine, Vol. 55, No. 2, 91-106, 2013.
doi:10.1109/MAP.2013.6529320 Google Scholar
14. Eul, H. J. and B. Schiek, "A generalized theory and new calibration procedures for network analyzer self-calibration," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, 724-731, 1991.
doi:10.1109/22.76439 Google Scholar
15. Marks, R. B., "A multiline method of network analyzer calibration," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 7, 1205-1215, 1991.
doi:10.1109/22.85388 Google Scholar
16. Hasar, U. C., G. Buldu, M. Bute, J. J. Barroso, T. Karacali, and M. Ertugrul, "Determination of constitutive parameters of homogeneous metamaterial slabs by a novel calibration-independent method," AIP Advances, Vol. 4, No. 10, 107116, 2014.
doi:10.1063/1.4898148 Google Scholar
17. Frickey, D. A., "Conversions between S, Z, Y , H, ABCD, and T parameters which are valid for complex source and load impedances," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 205-211, 1994.
doi:10.1109/22.275248 Google Scholar
18. Huynen, I., C. Steukers, and F. Duhamel, "A wideband line-line dielectrometric method for liquids, soils, and planar substrates," IEEE Transactions on Instrumentation and Measurement, Vol. 50, No. 5, 1343-1348, 2001.
doi:10.1109/19.963208 Google Scholar
19. Pozar, D. M., Microwave Engineering, Wiley, 2005.
20. Liu, Z., L. Zhu, G. Xiao, and Q. S. Wu, "An effective approach to deembed the complex propagation constant of half-mode SIW and its application," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 6, No. 1, 109-116, 2016.
doi:10.1109/TCPMT.2015.2496629 Google Scholar
21. Zhou, L., S. Sun, H. Jiang, and J. Hu, "Electrical-thermal characterizations of SIW with numerical SOC technique," IEEE International Conference on Computational Electromagnetics (ICCEM), 1-2, 2018. Google Scholar
22. Le, T., B. Song, Q. Liu, R. A. Bahr, S. Moscato, C. P. Wong, and M. M. Tentzeris, "A novel strain sensor based on 3D printing technology and 3D antenna design," IEEE 65th Electronic Components and Technology Conference (ECTC), 981-986, 2015.
doi:10.1109/ECTC.2015.7159714 Google Scholar
23. Mirzaee, M. and S. Noghanian, "High frequency characterisation of wood-fill PLA for antenna additive manufacturing application," Electronics Letters, Vol. 52, No. 20, 1656-1658, 2016.
doi:10.1049/el.2016.2505 Google Scholar
24. Krupka, J., "Frequency domain complex permittivity measurements at microwave frequencies," Measurement Science and Technology, Vol. 17, No. 6, R55, 2006.
doi:10.1088/0957-0233/17/6/R01 Google Scholar