1. Daniels, D. J., Ground Penetrating Radar, Wiley Online Library, 2005.
2. Pastorino, M., "Stochastic optimization methods applied to microwave imaging: A review," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 538-548, Mar. 2007.
doi:10.1109/TAP.2007.891568 Google Scholar
3. Chen, X., K.-M. Huang, and X.-B. Xu, "Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method," Progress In Electromagnetics Research, Vol. 53, 283-298, 2005.
doi:10.2528/PIER04102902 Google Scholar
4. Hajebi, M., A. Tavakoli, and A. Hoorfar, "Frequency domain inverse profiling of buried dielectric elliptical-cylindrical objects using evolutionary programming," IEEE Geosci. Remote Sens. Lett., Vol. 15, No. 4, 503-507, Apr. 2018.
doi:10.1109/LGRS.2017.2788699 Google Scholar
5. Sallucci, M., L. Poli, N. Anselmi, and A. Massa, "Multifrequency particle swarm optimization for enhanced multiresolution GPR microwave imaging," IEEE Trans. Geosci. Remote Sensing, Vol. 55, No. 3, 1305-1317, 2017.
doi:10.1109/TGRS.2016.2622061 Google Scholar
6. Kamilov, U. S., D. Liu, H. Mansour, and P. T. Boufounos, "A recursive born approach to nonlinear inverse scattering," IEEE Signal Process. Lett., Vol. 23, No. 8, 1052-1056, 2016.
doi:10.1109/LSP.2016.2579647 Google Scholar
7. Yu, Y., T. Yu, and L. Carin, "Three-dimensional inverse scattering of a dielectric target embedded in a lossy half-space," IEEE Trans. Geosci. Remote Sensing, Vol. 42, No. 5, 957-973, 2004.
doi:10.1109/TGRS.2003.820601 Google Scholar
8. Isernia, T., V. Pascazio, and R. Pierri, "On the local minima in a tomographic imaging technique," IEEE Trans. Geosci. Remote Sensing, Vol. 39, No. 7, 1596-1607, 2001.
doi:10.1109/36.934091 Google Scholar
9. Dong, Q. and C. M. Rappaport, "Microwave subsurface imaging using direct finite-difference frequency-domain-based inversion," IEEE Trans. Geosci. Remote Sensing, Vol. 47, No. 11, 3664-3670, 2009.
doi:10.1109/TGRS.2009.2028740 Google Scholar
10. Cui, T. J. and W. C. Chew, "Novel diffraction tomographic algorithm for imaging two-dimensional targets buried under a lossy earth," IEEE Trans. Geosci. Remote Sensing, Vol. 38, No. 4, 2033-2041, 2000.
doi:10.1109/36.851784 Google Scholar
11. Sun, Y., L. Qu, S. Zhang, and Y. Yin, "MT-BCS-based two-dimensional diffraction tomographic GPR imaging algorithm with multivie multistatic configuration," IEEE Geosci. Remote Sens. Lett., Vol. 13, No. 6, 831-835, 2016.
doi:10.1109/LGRS.2016.2549538 Google Scholar
12. Qu, L., Y. Yin, Y. Sun, and L. Zhang, "Diffraction tomographic ground-penetrating radar multibistatic imaging algorithm with compressive frequency measurements," IEEE Geosci. Remote Sens. Lett., Vol. 12, No. 10, 2011-2015, 2015.
doi:10.1109/LGRS.2015.2441991 Google Scholar
13. Hansen, T. B. and P. M. Johansen, "Inversion scheme for ground penetrating radar that takes into account the planar air soil interface," IEEE Trans. Geosci. Remote Sensing, Vol. 38, No. 1, 496-506, 2000.
doi:10.1109/36.823944 Google Scholar
14. Leone, G. and F. Soldovieri, "Analysis of the distorted born approximation for subsurface reconstruction: Truncation and uncertainties effects," IEEE Trans. Geosci. Remote Sensing, Vol. 41, No. 1, 66-74, 2003.
doi:10.1109/TGRS.2002.806999 Google Scholar
15. Fortuny-Guasch, J., "A novel 3-D subsurface radar imaging technique," IEEE Trans. Geosci. Remote Sensing, Vol. 40, No. 2, 443-452, 2002.
doi:10.1109/36.992808 Google Scholar
16. Bertero, M., "Linear inverse and ill-posed problems," Adv. Electron. Electron Phys., Vol. 75, 1-120, 1989. Google Scholar
17. Soumekh, M., "A system model and inversion for synthetic aperture radar imaging," IEEE Transactions on Image Processing, Vol. 1, No. 1, 64-76, 1992.
doi:10.1109/83.128031 Google Scholar
18. Lopez-Sanchez, J. M. and J. Fortuny-Guasch, "3-D radar imaging using range migration techniques," IEEE Trans. Antennas Propag., Vol. 48, No. 5, 728-737, 2000.
doi:10.1109/8.855491 Google Scholar
19. Cui, T. J., W. C. Chew, X. X. Yin, and W. Hong, "Study of resolution and super resolution in electromagnetic imaging for half-space problems," IEEE Trans. Antennas Propag., Vol. 52, No. 6, 1398-1411, 2004.
doi:10.1109/TAP.2004.829847 Google Scholar
20. Maisto, M. A., R. Solimene, and R. Pierri, "Resolution limits in inverse source problem beyond the Fresnel zone," J. Opt. Soc. Am. A, Vol. 36, No. 5, 826-833, 2019.
doi:10.1364/JOSAA.36.000826 Google Scholar
21. Maisto, M. A., R. Solimene, and R. Pierri, "Depth resolution in strip current reconstructions in near non-reactive zone," J. Opt. Soc. Am. A, Vol. 36, No. 6, 975-982, 2019.
doi:10.1364/JOSAA.36.000975 Google Scholar
22. Solimene, R., M. A. Maisto, and R. Pierri, "Inverse source in near field: The case of strip current," J. Opt. Soc. Am. A, Vol. 35, 755-763, 2018.
doi:10.1364/JOSAA.35.000755 Google Scholar
23. Tikhonov, A. N. and V. I. Arsenine, Solution to Ill-posed Problems, Halstead, 1977.
24. Cheney, M. and R. J. Bonneau, "Imaging that exploits multipath scattering from point scatterers," Inverse Problems, Vol. 20, 1691-1711, 2004.
doi:10.1088/0266-5611/20/5/023 Google Scholar
25. Maisto, M. A., R. Solimene, and R. Pierri, "Sampling approach for singular system computation of a radiation operator," J. Opt. Soc. Am. A, Vol. 36, 353-361, 2019.
doi:10.1364/JOSAA.36.000975 Google Scholar
26. Gabor, D., "Light and information," Progress in Optics, E. Wolf, ed., Vol. 1, 109–153, North-Holland, Amsterdam, The Netherlands, 1961. Google Scholar