1. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Communications Magazine, Vol. 49, No. 6, 101-107, June 2011.
doi:10.1109/MCOM.2011.5783993 Google Scholar
2. Hong, W., K. Baek, Y. Lee, Y. Kim, and S. Ko, "Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices," IEEE Communications Magazine, Vol. 52, No. 9, 63-69, September 2014.
doi:10.1109/MCOM.2014.6894454 Google Scholar
3. Friis, H. T., "A note on a simple transmission formula," Proceedings of the IRE, Vol. 34, No. 5, 254-256, May 1946.
doi:10.1109/JRPROC.1946.234568 Google Scholar
4. Rappaport, T. S., et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813 Google Scholar
5. Rowell, C. and E. Y. Lam, "Mobile-phone antenna design," IEEE Antennas and Propagation Magazine, Vol. 54, No. 4, 14-34, Aug. 2012.
doi:10.1109/MAP.2012.6309152 Google Scholar
6. Huo, Y., X. Dong, and W. Xu, "5G cellular user equipment: From theory to practical hardware design," IEEE Access, Vol. 5, 13992-14010, 2017.
doi:10.1109/ACCESS.2017.2727550 Google Scholar
7. Karthikeya, G. S., M. P. Abegaonkar, and S. K. Koul, "CPW fed wideband corner bent antenna for 5G mobile terminals," IEEE Access, Vol. 7, 10967-10975, 2019.
doi:10.1109/ACCESS.2019.2891728 Google Scholar
8. Karthikeya, G. S., M. P. Abegaonkar, and S. K. Koul, "CPW fed conformal folded dipole with pattern diversity for 5G mobile terminals," Progress In Electromagnetics Research C, Vol. 87, 199-212, 2018.
doi:10.2528/PIERC18082902 Google Scholar
9. Jilani, S. F. and A. Alomainy, "Planar millimeter-wave antenna on low-cost flexible PET substrate for 5G applications," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-3, Davos, 2016. Google Scholar
10. Jilani, S. F., M. O. Munoz, Q. H. Abbasi, and A. Alomainy, "Millimeter-wave liquid crystal polymer based conformal antenna array for 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 1, 84-88, Jan. 2019.
doi:10.1109/LAWP.2018.2881303 Google Scholar
11. Hawatmeh, D. F., S. LeBlanc, P. I. Deffenbaugh, and T. Weller, "Embedded 6-GHz 3-D printed half-wave dipole antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 145-148, 2017.
doi:10.1109/LAWP.2016.2561918 Google Scholar
12. Ta, S. X., H. Choo, and I. Park, "Broadband printed-dipole antenna and its arrays for 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2183-2186, 2017.
doi:10.1109/LAWP.2017.2703850 Google Scholar
13. Zhu, S., H. Liu, Z. Chen, and P. Wen, "A compact gain-enhanced Vivaldi antenna array with suppressed mutual coupling for 5G mmWave application," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 776-779, May 2018.
doi:10.1109/LAWP.2018.2816038 Google Scholar
14. Alhalabi, R. A. and G. M. Rebeiz, "High-efficiency angled-dipole antennas for millimeter-wave phased array applications," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3136-3142, 2008.
doi:10.1109/TAP.2008.929506 Google Scholar
15. Yang, B., Z. Yu, Y. Dong, J. Zhou, and W. Hong, "Compact tapered slot antenna array for 5G millimeter-wave massive MIMO systems," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6721-6727, December 2017.
doi:10.1109/TAP.2017.2700891 Google Scholar
16. Reddy, G. S., A. Kamma, S. Kharche, J.Mukherjee, and S. K.Mishra, "Cross-configured directional UWB antennas for multidirectional pattern diversity characteristics," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 853-858, February 2015.
doi:10.1109/TAP.2014.2382687 Google Scholar
17. Zhou, B., H. Li, X. Zou, and T.-J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.
doi:10.2528/PIER11072710 Google Scholar
18. Liu, F., J. Guo, L. Zhao, X. Shen, and Y. Yin, "A meta-surface decoupling method for two linear polarized antenna array in sub-6GHz base station applications," IEEE Access, Vol. 7, 2759-2768, 2019.
doi:10.1109/ACCESS.2018.2886641 Google Scholar
19. Sharma, Y., D. Sarkar, K. Saurav, and K. V. Srivastava, "Three-element MIMO antenna system with pattern and polarization diversity for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1163-1166, 2017.
doi:10.1109/LAWP.2016.2626394 Google Scholar
20. Dadgarpour, A., B. Zarghooni, B. S. Virdee, and T. A. Denidni, "One- and two-dimensional beamswitching antenna for millimeter-wave MIMO applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 2, 564-573, February 2016.
doi:10.1109/TAP.2015.2508478 Google Scholar
21. Briqech, Z., A. Sebak, and T. A. Denidni, "Wide-scan MSC-AFTSA array-fed grooved spherical lens antenna for millimeter-wave MIMO applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 2971-2980, July 2016.
doi:10.1109/TAP.2016.2565704 Google Scholar
22. Sun, M., Z. N. Chen, and X. Qing, "Gain enhancement of 60-GHz antipodal tapered slot antenna using zero-index metamaterial," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1741-1746, April 2013.
doi:10.1109/TAP.2012.2237154 Google Scholar
23. Wani, Z., M. P. Abegaonkar, and S. K. Koul, "Millimeter-wave antenna with wide-scan angle radiation characteristics for MIMO applications," Int. J. RF Microw. Comput. Aided Eng., e21564, 2018. Google Scholar