1. Liu, S.-F., X.-W. Shi, and S.-D. Liu, "Study on the impedance-matching technique for high-temperature superconducting microstrip antennas," Progress In Electromagnetics Research, Vol. 77, 281-284, 2007.
doi:10.2528/PIER07082502 Google Scholar
2. Morrow, J. D., J. T. Williams, M. F. Davis, D. L. Licon, H. Rampersad, D. R. Jazdyk, X. Zhang, S. A. Long, and J. C. Wolfe, "Circularly polarized 20-GHz high-temperature superconducting microstrip antenna array," IEEE Transactions on Applied Superconductivity, Vol. 9, 4725-4732, 1999.
doi:10.1109/77.819344 Google Scholar
3. Lancaster, M. J., H. Y. Wang, and J.-S. Hong, "Thin-film HTS planar antennas," IEEE Transactions on Applied Superconductivity, Vol. 8, 168-177, 1998.
doi:10.1109/77.740682 Google Scholar
4. Bedra, S., R. Bedra, S. Benkouda, and T. Fortaki, "Superstrate loading effects on the resonant characteristics of high Tc superconducting circular patch printed on anisotropic materials," Physica C: Superconductivity and Its Applications, Vol. 543, 1-7, 2017.
doi:10.1016/j.physc.2017.09.006 Google Scholar
5. Biswas, M. and A. Mandal, "Design and development of an equilateral patch sensor for determination of permittivity of homogeneous dielectric medium," Microwave and Optical Technology Letters, Vol. 56, 1097-1104, 2014.
doi:10.1002/mop.28269 Google Scholar
6. Bedra, S., R. Bedra, S. Benkouda, and T. Fortaki, "Efficient CAD model to analysis of high Tc superconducting circular microstrip antenna on anisotropic substrates," Advanced Electromagnetics, Vol. 6, 40-45, 2017.
doi:10.7716/aem.v6i2.446 Google Scholar
7. Liu, J., S. Zheng, Y. Li, and Y. Long, "Broadband monopolar microstrip patch antenna with shorting vias and coupled ring," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 39-42, 2013. Google Scholar
8. Sun, C., "A design of compact ultrawideband circularly polarized microstrip patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 67, 6170-6175, 2019.
doi:10.1109/TAP.2019.2922759 Google Scholar
9. Bedra, S., R. Bedra, S. Benkouda, and T. Fortaki, "Analysis of HTS circular patch antennas including radome effects," International Journal of Microwave and Wireless Technologies, Vol. 10, 843-850, 2018.
doi:10.1017/S175907871800034X Google Scholar
10. Gnanamurugan, S. and P. Sivakumar, "Performance analysis of rectangular microstrip patch antenna for wireless application using FPGA," Microprocessors and Microsystems, Vol. 68, 11-16, 2019.
doi:10.1016/j.micpro.2019.04.006 Google Scholar
11. Dam, M. and M. Biswas, "Investigation of a right-angled isosceles triangular patch antenna on composite and suspended substrates based on a CAD-oriented cavity model," IETE Journal of Research, Vol. 63, 248-259, 2017.
doi:10.1080/03772063.2016.1261050 Google Scholar
12. Biswas, M. and M. Sen, "Design and development of rectangular patch antenna with superstrates for the application in portable wireless equipments and aircraft radome," Microwave and Optical Technology Letters, Vol. 56, 883-893, 2014.
doi:10.1002/mop.28197 Google Scholar
13. Biswas, M. and A. Mandal, "Experimental and theoretical investigation of resonance and radiation characteristics of superstrate loaded rectangular patch antenna," Microwave and Optical Technology Letters, Vol. 57, 791-799, 2015.
doi:10.1002/mop.28961 Google Scholar
14. Olaimat, M. M. and N. I. Dib, "A study of 15˚-75˚-90˚ angles triangular patch antenna," Progress In Electromagnetics Research Letters, Vol. 21, 1-9, 2011.
doi:10.2528/PIERL11010203 Google Scholar
15. Benkouda, S., M. Amir, T. Fortaki, and A. Benghalia, "Dual-frequency behavior of stacked high Tc superconducting microstrip patches," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 32, 1350-1366, 2011.
doi:10.1007/s10762-011-9842-1 Google Scholar
16. Joković, J. J., T. Z. Dimitrijević, and N. S. Dončov, "Computational analysis and validation of the cylindrical TLM approach on IMCP antennas," Wireless Personal Communications, Vol. 106, 1573-1589, 2019.
doi:10.1007/s11277-019-06230-3 Google Scholar
17. Bedra, S., T. Fortaki, A. Messai, and R. Bedra, "Spectral domain analysis of resonant characteristics of high Tc superconducting rectangular microstrip patch printed on isotropic or uniaxial anisotropic substrates," Wireless Personal Communications, Vol. 86, 495-511, 2016.
doi:10.1007/s11277-015-2941-x Google Scholar
18. Gurel, C. S. and E. Yazgan, "Analysis of annular ring microstrip patch on uniaxial medium via Hankel transform domain immittance approach," Progress In Electromagnetics Research M, Vol. 11, 37-52, 2010.
doi:10.2528/PIERM09071404 Google Scholar
19. Bedra, S., R. Bedra, S. Benkouda, and T. Fortaki, "Efficient full-wave analysis of inverted circular microstrip antenna," Microwave and Optical Technology Letters, Vol. 56, 2422-2425, 2014.
doi:10.1002/mop.28618 Google Scholar
20. Biswas, M. and M. Dam, "Closed-form model to determine the co-axial probe reactance of an equilateral triangular patch antenna," International Journal of Microwave and Wireless Technologies, Vol. 10, 801-813, 2018.
doi:10.1017/S1759078718000661 Google Scholar
21. Chung, D.-C., "HTS microstrip bipin antenna array for broadband satellite communication," IEEE Transactions on Applied Superconductivity, Vol. 13, 297-300, 2003.
doi:10.1109/TASC.2003.813714 Google Scholar
22. Olaimat, M. M. and N. I. Dib, "Improved formulae for the resonant frequencies of triangular microstrip patch antennas," International Journal of Electronics, Vol. 98, 407-424, 2011.
doi:10.1080/00207217.2010.547811 Google Scholar
23. Richard, M. A., K. B. Bhasin, and P. C. Claspy, "Superconducting microstrip antennas: An experimental comparison of two feeding methods," IEEE Transactions on Antennas and Propagation, Vol. 41, 967-974, 1993.
doi:10.1109/8.237630 Google Scholar