Vol. 87
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-12-17
Design of a Triple Band Notched Compact FSS at UWB Frequency Range
By
Progress In Electromagnetics Research M, Vol. 87, 147-157, 2019
Abstract
This article presents a bandstop Frequency Selective Surface (FSS) prototype based on square split ring resonators (SSRRs) and a square loop (SL) structure for Ultra Wide Band (UWB) frequency range. Triple band notches are obtained at WiMAX (3.3-3.6 GHz), WLAN (5-6 GHz) and Satellite communication X-band (7.2-8.4 GHz). To make this proposed design work as a band-stop filter, two SSRRs are positioned at the top layer of the substrate to resonate at WiMAX and WLAN frequency band respectively. A single SL is located at the bottom of the substrate that resonates at Satellite communication X-band. Attenuation more than 20 dB is observed at all notched frequencies. An angular stability from 0˚ to 40˚ is obtained. Compact size, simple structure, low cost material, single layer, easy fabrication, and wide coverage are some of the feathers of this proposed FSS. The dimension of proposed unit cell of FSS is 10x10 mm2.
Citation
Kanishka Katoch, Naveen Jaglan, and Samir Dev Gupta, "Design of a Triple Band Notched Compact FSS at UWB Frequency Range," Progress In Electromagnetics Research M, Vol. 87, 147-157, 2019.
doi:10.2528/PIERM19091103
References

1. Federal Communications Commission "Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems," Tech. Rep. ET-Docket 98-153, FCC02-48, Federal Communications Commission (FCC), Washington, DC, USA, 2002.        Google Scholar

2. Paul, G. S. and K. Mandal, "Polarization-insensitive and angularly stable compact ultra-wide stopband frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 9, 1917-1921, Sept. 2019.        Google Scholar

3. Wu, W., B. Yuan, and A.Wu, "A quad-element UWB MIMO antenna with band-notch and reduced mutual coupling based on EBG structures," Int. J. Antennas Propag., Vol. 2018, 1-10, 2018.        Google Scholar

4. Jaglan, N., S. D. Gupta, B. K. Kanaujia, S. Srivastava, and E. Thakur, "Triple Band Notched DGCEBG Structure Based UWB MIMO/Diversity Antenna," Progress In Electromagnetics Research C,, Vol. 80, 21-37, 2018.        Google Scholar

5. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Vol. 29, Wiley Online Library: Hoboken, NJ, USA, 2000.

6. Munk, B. A., Finite Antenna Arrays and FSS, New York, Wiley, 2003.

7. Pasian, M., S.Monni, A. Neto, M. Ettorre, and G. Gerini, "Frequency selective surfaces for extended bandwidth backing reflector functions," IEEE Trans. Antennas Propag., Vol. 58, No. 1, 43-50, Jan. 2010.        Google Scholar

8. Sivasamy, R., B. Moorthy, M. Kanagasabai, V. R. Samsingh, and M. G. N. Alsath, "A wideband frequency tunable fss for electromagnetic shielding applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 1, Feb. 2018.        Google Scholar

9. Chen, H., X. Hou, and L. Deng, "Design of frequency-selective surfaces radome for a planar slotted waveguide antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1231-1233, 2009.        Google Scholar

10. Duan, Z., G. Abomakhleb, and G. Lu, "Perforated medium applied in frequency selective surfaces and curved antenna radome," Applied Sciences, Vol. 9, No. 6, 1-12, 2019.        Google Scholar

11. Zhang, K., W. Jiang, J. Ren, and S.-X Gong, "Design of frequency selective absorber based on parallel LC resonators," Progress In Electromagnetics Research M, Vol. 65, 91-100, 2018.        Google Scholar

12. Das, G., N. K. Sahu, A. Sharma, R. K. Gangwar, and M. S. Sharawi, "FSS based spatially decoupled back to back four port MIMO DRA with multi-directional pattern diversity," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 8, 1552-1556, 2019.        Google Scholar

13. Mondal, K., D. C. Sarkar, and P. P. Sarkar, "5 × 5 matrix patch type frequency selective surface based miniaturized enhanced gain broadband microstrip antenna for WlAN/WiMAX/ISM band applications," Progress In Electromagnetics Research C, Vol. 89, 207-219, 2019.        Google Scholar

14. Jiang, W., T. Hong, S.-X. Gong, and C.-K. Li, "Miniaturized frequency selective surface with a bionical structure," Microw. Opt. Technol. Lett., Vol. 55, No. 2, 335-337, Feb. 2013.        Google Scholar

15. Kiani, G. I., K. P. Esselle, K. L. Ford, A. R. Weily, and C. Panagamuwa, "Angle and polarization independent bandstop frequency selective surface for indoor wireless systems," Microw. Opt. Technol. Lett., Vol. 50, No. 9, 2315-2317, Sep. 2008.        Google Scholar

16. Chiu, C.-N. and K.-P. Chang, "A novel miniaturized-element frequency selective surface having a stable resonance," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1175-1177, 2009.        Google Scholar

17. Yang, G., T. Zhang, W. Li, and Q. Wu, "A novel stable miniaturized frequency selective surface," IEEE Antennas Wireless Propag. Lett., Vol. 9, 1018-1021, 2010.        Google Scholar

18. Natarajan, R., M. Kanagasabai, S. Baisakhiya, R. Sivasamy, S. Palaniswamy, and J. K. Pakkathillam, "A compact frequency selective surface with stable response for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 718-720, 2013.        Google Scholar

19. Li, W., T. Zhang, G. Yang, and Q. Wu, "A novel frequency selective surface with improved miniaturization performance," J. Electromagn. Anal. Appl., Vol. 4, 108-111, 2012.        Google Scholar

20. Gianvittorio, J. P., J. Romeu, S. Blanch, and Y. Rahmat-Samii, "Selfsimilar prefractal frequency selective surfaces for multiband and dualpolarized applications," IEEE Trans. Antennas Propag., Vol. 51, No. 11, 3088-3096, Nov. 2003.        Google Scholar

21. Hill, R. A. and B. A. Munk, "The effect of perturbating a frequencyselective surface and its relation to the design of a dual-band surface," IEEE Trans. Antennas Propag., Vol. 44, No. 3, 368-374, Mar. 1996.        Google Scholar

22. Sanz-Izquierdo, B., E. A. Parker, and J. C. Batchelor, "Dual-band tunable screen using complementary split ring resonators," IEEE Trans. Antennas Propag., Vol. 58, No. 11, 3761-3765, Nov. 2010.        Google Scholar

23. Huang, J., T.-K. Wu, and S.-W. Lee, "Tri-band frequency selective surface with circular ring elements," IEEE Trans. Antennas Propag., Vol. 42, No. 2, 166-175, Feb. 1994.        Google Scholar

24. Syed, I. S., Y. Ranga, L.Matekovits, K. P. Esselle, and S. G. Hay, "A single-layer frequency-selective surface for ultrawideband electromagnetic shielding," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 6, 1404-1411, 2014.        Google Scholar

25. Sivasamy, R., B. Moorthy, M. Kanagasabai, V. R. Samsingh, and M. G. N. Alsath, "A wideband frequency tunable FSS for electromagnetic shielding applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 1, Feb. 2018.        Google Scholar

26. Garg, S. and S. Yadav, "A triple band-reject frequency selective surface for broadband applications," Optical and Wireless Technologies, 437-446, 2018.        Google Scholar

27. Patel, S. K. and Y. Kosta, "Liquid metamaterial based microstrip antenna," Microwave and Optical Technology Letters, Vol. 60, No. 2, 2018.        Google Scholar

28. Wang, J., S. Qu, J. Zhang, H.Ma, Y. Yang, C. Gu, and X.Wu, "A tunable left handed metamaterial based on modified broadside-coupled split-ring resonators," Progress In Electromagnetics Research Letters, Vol. 6, 35-45, 2009.        Google Scholar

29. Langley, R. and E. Parker, "Equivalent circuit model for arrays of square loops," Electron. Lett., Vol. 18, No. 7, 294, 1982.        Google Scholar

30. Lin, X. Q. and T. J. Cui, "Controlling the bandwidth of split ring resonators," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 4, 245-247, 2008.        Google Scholar

31. Nauman, M., R. Saleem, and A. K. Rashid, "A miniaturized flexible frequency selective surface for X-band applications," IEEE Trans. Electromagn. Compat., Vol. 58, No. 2, 419-428, 2016.        Google Scholar

32. Unaldı, S., S. Cimen, G. Cakır, and U. E. Ayten, "A novel dual-band ultrathin FSS with closely settled frequency response," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1381-1384, 2017.        Google Scholar

33. Farooq, U., M. F. Shafique, and M. J. Mughal, "Polarization insensitive dual band frequency selective surface for RF shielding through glass windows," IEEE Transactions on Electromagnetic Compatibility, 1-8, 2019.        Google Scholar

34. Bashiri, M., C. Ghobadi, J. Nourinia, and M. Majidzadeh, "WiMAX, WLAN, and X-band filtering mechanism: Simple-structured triple-band frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3245-3248, 2017.        Google Scholar