1. Donaldson, J., B. Haddad, and W. S. Khan, "The pathophysiology, diagnosis and current management of acute compartment syndrome," The Open Orthopaedics Journal, Vol. 8, 185-193, 2014.
doi:10.2174/1874325001408010185 Google Scholar
2. Ferri, F. F., Ferri’s Clinical Advisor 2018 E-Book: 5 Books in 1, Elsevier Health Sciences, 2017.
3. Whitesides, Jr., T. E., and M. M. Heckman, "Acute compartment syndrome: Update on diagnosis and treatment," Journal of the American Academy of Orthopaedic Surgeons, Vol. 4, No. 4, 209-218, Aug. 1996.
doi:10.5435/00124635-199607000-00005 Google Scholar
4. Via, A. G., F. Oliva, M. Spoliti, and N. Maffulli, "Acute compartment syndrome," Muscles, Ligaments and Tendons Journal, Vol. 5, No. 1, 18-22, Mar. 2015. Google Scholar
5., http://www.who.int/surgery/publications/s16368e.pdf?ua=1.
6. Loutridis, A., M. John, and M. J. Ammann, "Folded meander line antenna for wireless M-Bus in the VHF and UHF bands," Electronics Letters, Vol. 51, No. 15, 1138-1140, Jul. 2015.
doi:10.1049/el.2015.1844 Google Scholar
7. Bonnet, B., F. Guitton, Y. Raingeaud, and D. Magnon, "Resonant frequency, bandwidth and gain of meander line antenna," 11th International Symposium on Antenna Technology and Applied Electromagnetics, 1-4, 2005. Google Scholar
8. Bhaskar, S. and A. K. Singh, "Capacitive tip loaded linearly tapered meander line antenna for UHF RFID tag applications," IEEE Applied Electromagnetics Conference, 1-2, 2017. Google Scholar
9. Suh, S. Y., A. E. Waltho, L. Krishnamurthy, D. Souza, S. Gupta, H. K. Pan, and V. K. Nair, "A miniaturized dual-band dipole antenna with a modified meander line for laptop computer application in the 2.5 and 5.25 GHz WLAN band," IEEE Antennas and Propagation Society International Symposium, 2617-2620, 2006. Google Scholar
10. Volakis, J. L., C.-C. Chen, and K. Fujimoto, Small Antennas: Miniaturization Techniques & Applications, McGraw-Hill, New York, 2010.
11. Fujimoto, K. and H. Morishita, Modern Small Antennas, Cambridge University Press, UK, 2013.
doi:10.1017/CBO9780511977602
12., https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/techbrief/ab-ansys-hfss-forantenna- simulation.pdf.
doi:10.1017/CBO9780511977602
13., http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php.
doi:10.1017/CBO9780511977602
14. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. measurements in the frequency range 10Hz to 20GHz," Physics in Medicine and Biology, Vol. 41, No. 11, 2251-2269, Nov. 1996.
doi:10.1088/0031-9155/41/11/002 Google Scholar
15. Gabriel, C., A. Peyman, and E. H. Grant, "Electrical conductivity of tissue at frequencies below 1MHz," Physics in Medicine & Biology, Vol. 54, No. 16, 4863-4878, Jul. 2009.
doi:10.1088/0031-9155/54/16/002 Google Scholar
16. Yazdandoost, K. Y. and I. Laakso, "RF field based detection of compartment syndrome," 13th International Symposium on Medical Information and Communication Technology, 2019. Google Scholar
17., https://catalog.ansys.com/product/5bfec4c8393ff6c28c1997da/ansys-human-body-m.
18. Schiffer, E., E. Van Gessel, R. Fournier, A. Weber, and Z. Gamulin, "Cerebrospinal fluid density influences extent of plain bupivacaine spinal anesthesia," Anesthesiology, Vol. 96, No. 6, 1325-1330, Jun. 2002.
doi:10.1097/00000542-200206000-00010 Google Scholar
19., IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, IEEE Standards C95.1, 2005.
20. "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices — Human models, instrumentation, and procedures — Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6 GHz),", IEC 62209-2, Mar. 2010. Google Scholar
21. ICNIRP "Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300GHz)," Health Phys., Vol. 74, No. 4, 494-522, Apr. 1998. Google Scholar