1. Mait, J. N., G. W. Euliss, and R. A. Athale, "Computational imaging," Advances in Optics and Photonics, Vol. 10, 409-483, 2018.
doi:10.1364/AOP.10.000409 Google Scholar
2. Yurduseven, O., T. Fromenteze, K. Cooper, G. Chattopadhyay, and D. R. Smith, "From microwaves to submillimeter waves: Modern advances in computational imaging, radar, and future trends," Proceedings of Society of Photographic Instrumentation Engineers, Vol. 10917, San Francisco, United States, Feb. 2-7, 2019. Google Scholar
3. Guan, J. and W. Chen, "On the coherence relationship between measurement matrices and equivalent radiation sources in microwave computational imaging applications," Applied Sciences, Vol. 9, 1172, 2019.
doi:10.3390/app9061172 Google Scholar
4. Huang, K. and X. Zhao, Inverse Problems in Electromagnetic Fields and Its Applications, 1st Ed., Science Press, Beijing, China, 2005 (in Chinese).
5. Gureyev, T. E., D. M. Paganin, A. Kozlov, Ya. I. Nesterets, and H. M. Quiney, "Complementary aspects of spatial resolution and signal-to-noise ratio in computational imaging," Physical Review A, Vol. 97, 053819, 2018.
doi:10.1103/PhysRevA.97.053819 Google Scholar
6. Carin, L., D. Liu, and B. Guo, "Coherence, compressive sensing, and random sensor arrays," IEEE Antennas and Propagation Magazine, Vol. 53, 28-39, 2011.
doi:10.1109/MAP.2011.6097283 Google Scholar
7. Hunt, J., T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, "Metamaterial apertures for computational imaging," Science, Vol. 339, 310-313, 2013.
doi:10.1126/science.1230054 Google Scholar
8. Lipworth, G., A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, "Metamaterial apertures for coherent computational imaging on the physical layer," Journal of Optical Society of America A, Vol. 30, 1603-1612, 2013.
doi:10.1364/JOSAA.30.001603 Google Scholar
9. Hunt, J., J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, "Metamaterial microwave holographic imaging system," Journal of Optical Society of America A, Vol. 31, 2109-2119, 2014.
doi:10.1364/JOSAA.31.002109 Google Scholar
10. Fromenteze, T., O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, "Computational imaging using a mode-mixing cavity at microwave frequencies," Applied Physics Letters, Vol. 106, 194104, 2015.
doi:10.1063/1.4921081 Google Scholar
11. Imani, M. F., T. Sleasman, J. N. Gollub, and D. R. Smith, "Analytical modeling of printed metasurface cavities for computational imaging," Journal of Applied Physics, Vol. 120, 144903, 2016.
doi:10.1063/1.4964336 Google Scholar
12. Marks, D. L., J. Gollub, and D. R. Smith, "Spatially resolving antenna arrays using frequency diversity," Journal of Optical Society of America A, Vol. 33, 899-912, 2016.
doi:10.1364/JOSAA.33.000899 Google Scholar
13. Sleasman, T., M. F. Imani, J. N. Gollub, and D. R. Smith, "Dynamic metamaterial aperture for microwave imaging," Applied Physics Letters, Vol. 107, 204104, 2015.
doi:10.1063/1.4935941 Google Scholar
14. Wu, Z., L. Zhang, H. Liu, and N. Kou, "Enhancing microwave metamaterial aperture radar imaging performance with rotation synthesis," IEEE Sensors Journal, Vol. 16, 8035-8043, 2016.
doi:10.1109/JSEN.2016.2609200 Google Scholar
15. Yoya, A. C. T., B. Fuchs, C. Leconte, and M. Davy, "A reconfigurable chaotic cavity with fluorescent lamps for microwave computational imaging," Progress In Electromagnetics Research, Vol. 165, 1-12, 2019.
doi:10.2528/PIER19011602 Google Scholar
16. Zhu, S., X. Dong, Y. He, M. Zhao, G. Dong, X. Chen, and d A. Zhang, "Frequency-polarization-diverse aperture for coincidence imaging," IEEE Microwave and Wireless Components Letters, Vol. 28, 82-84, 2018.
doi:10.1109/LMWC.2017.2769448 Google Scholar
17. Poon, A. and D. Tse, "Polarization degrees of freedom," Proceedings of 2008 IEEE International Symposium on Information Theory, 1587-1591, Toronto, Canada, Jul. 6-11, 2008. Google Scholar
18. Chew, W.-C., Waves and Fields in Inhomogeneous Media, 1st Ed., IEEE Press, New York, United States, 1995.
19. Van Den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, 1607-1620, 1997.
doi:10.1088/0266-5611/13/6/013 Google Scholar
20. Sleasman, T., M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, "Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies," Journal of Optical Society of America B, Vol. 33, 1098-1111, 2016.
doi:10.1364/JOSAB.33.001098 Google Scholar
21. Hori, M., "Inverse analysis method using spectral decomposition of Green’s function," Geophysical Journal International, Vol. 147, 77-87, 2001. Google Scholar
22. Kastner, R., "On the singularity of the full spectral Green’s dyad," IEEE Transactions on Antennas and Propagation, Vol. 35, 1303-1305, 1987.
doi:10.1109/TAP.1987.1144016 Google Scholar
23. Pellat-Finet, P., "Fresnel diffraction and the fractional-order Fourier transform," Optics Letters, Vol. 19, 1388-1390, 1994.
doi:10.1364/OL.19.001388 Google Scholar
24. Alieva Vicente Lopez, T., F. Agullo-Lopez, and L. B. Almeida, "The fractional Fourier transform in optical propagation problems," Journal of Modern Optics, Vol. 41, 1037-1044, 1994.
doi:10.1080/09500349414550971 Google Scholar
25. Ledger, P. D. and W. R. Bill Lionheart, "Understanding the magnetic polarizability tensor," IEEE Transactions on Magnetics, Vol. 52, 1-16, 2016.
doi:10.1109/TMAG.2015.2507169 Google Scholar
26. Duarte-Carvajalino, J. M. and G. Sapiro, "Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization," IEEE Transactions on Image Processing, Vol. 18, 1395-1408, 2009.
doi:10.1109/TIP.2009.2022459 Google Scholar
27. Bioucas-Dias, J. M. and M. A. T. Figueiredo, "A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration," IEEE Transactions on Image Processing, Vol. 16, 2992-3004, 2007.
doi:10.1109/TIP.2007.909319 Google Scholar