1. Burke, P., C. Rutherglen, and Z. Yu, "Carbon nanotube antennas," Proceedings of Joint 9th International Conference on Electromagnetics in Advanced Applications, 937-940, Torino, Italy, 2005. Google Scholar
2. Hanson, G. W., "Fundamental transmitting properties of carbon nanotube antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3426-3435, 2005.
doi:10.1109/TAP.2005.858865 Google Scholar
3. Jurn, Y. N., M. F. Malek, and W.-W. Liu, "Investigation of single-wall carbon nanotubes at THz antenna," ICED Conference, 415-420, Malaysia, 2014. Google Scholar
4. Jurn, Y. N., M. F. Malek, and W.-W. Liu, "Investigation of single-wall carbon nanotubes at THz antenna," Malaysia International Conference on Communications (MICC), 246-251, Malaysia, 2015. Google Scholar
5. Jurn, Y. N., M. F. Malek, and W.-W. Liu, "A 60 GHz single-walled carbon nanotube composite material for dipole antenna applications," Malaysia International Conference on Communications (MICC), 323-328, Malaysia, 2015. Google Scholar
6. Jurn, Y. N., M. F. B. A. Malek, and H. A. Rahim, "Mathematical analysis and modeling of singlewalled carbon nanotube composite material for antenna applications," Progress In Electromagnetics Research M, Vol. 45, 59-71, 2016.
doi:10.2528/PIERM15091702 Google Scholar
7. Jurn, Y. N., M. F. Abdul Malek, and H. A. Rahim, "Carbon nanotubes composite materials for dipole antennas at terahertz range," Progress In Electromagnetics Research M, Vol. 66, 11-18, 2018. Google Scholar
8. Jurn, Y. N., M. F. Malek, and W.-W. Liu, "Important parameters analysis of the single-walled carbon nanotubes composite materials," ARPN Journal of Engineering and Applied Sciences, Vol. 11, No. 8, 5108-5113, 2016. Google Scholar
9. Jurn, Y. N., M. F. Malek, and W.-W. Liu, "An investigation of single-walled carbon nanotubes bundle dipole antenna at THz frequencies," IEEE International Conference on Control System Computing and Engineering, 565-570, 2014. Google Scholar
10. Jurn, Y. N., M. F. Malek, and Sawsen A. Mahmood, "Performance evaluation of the electromagnetic behavior of the bundle SWCNTs with circular geometry," CONECCT Conference, 1-6, India, 2015. Google Scholar
11. Jurn, Y. N., M. F. Malek, and Sawsen A. Mahmood, "Modelling and simulation of rectangular bundle of single-walled carbon nanotubes for antenna applications," Journal of Key Engineering Materials, Vol. 701, 57-66, 2016.
doi:10.4028/www.scientific.net/KEM.701.57 Google Scholar
12. Jurn, Y. N., M. F. Malek, and Sawsen A. Mahmood, "Electromagnetic modelling of bundle of single-walled carbon nanotubes with circular geometry for antenna applications," ACES Journal, Vol. 32, No. 6, 531-541, 2017. Google Scholar
13. Huang, Y., W. Y. Yin, and Q. H. Liu, "Performance prediction of carbon nanotube bundle dipole antennas," IEEE Transactions on Nanotechnology, Vol. 7, No. 3, 331-337, 2008.
doi:10.1109/TNANO.2007.915017 Google Scholar
14. Choi, S. and K. Sarabandi, "Performance assessment of bundled carbon nanotube for antenna applications at terahertz frequencies and higher," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 3, 802-809, 2011.
doi:10.1109/TAP.2010.2103023 Google Scholar
15. Hanson, G. W. and J. Hao, "Infrared and optical properties of carbon nanotube dipole antennas," IEEE Transactions on Nanotechnology, Vol. 5, No. 6, 766-775, 2006.
doi:10.1109/TNANO.2006.883475 Google Scholar
16. Mehdipour, A., I. D. Rosca, A. R. Sebak, W. Christophe, and S. V. Hoa, "Full-Composite fractal antenna using carbon nanotubes for multiband wireless applications," IEEE Antennas and Wireless Propagation, Vol. 9, 891-894, 2010.
doi:10.1109/LAWP.2010.2076342 Google Scholar
17. Mehdipour, A., I. D. Rosca, A. R. Sebak, W. Christophe, and S. V. Hoa, "Carbon nanotube composites for wideband millimeter-wave antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 10, 3572-3578, 2011.
doi:10.1109/TAP.2011.2163755 Google Scholar
18. Aissa, B., M. Nedil, M. Habib, and D. Therriault, "Fluidic patch antenna based on liquid metal alloy/single-wall carbon-nanotube operating at the S-band frequency," Applied Physics Letters, Vol. 103, No. 5, 063101-1-063101-5, 2013. Google Scholar
19. Alvarez, N. T., T. Ochmann, N. Kienzle, B. Ruff, M. R. Haase, T. Hopkins, S. Pixley, D. Mast, M. J. Schulz, and V. Shanov, "Polymer coating of carbon nanotube fibers for electric microcables," Nanomaterials, Vol. 4, 879-893, 2014.
doi:10.3390/nano4040879 Google Scholar
20. Hanium Marmia, K. and T. Mieno, "Production and properties of carbon nanotube/cellulose composite paper," Journal of Nanomaterials, Article ID 6745029, pages 11, 2017. Google Scholar
21. Amram Bengio, E., D. Senic, L. W. Taylor, R. J. Headrick, M. King, P. Chen, C. A. Little, J. Ladbury, C. J. Long, C. L. Holloway, A. Babakhani, J. C. Booth, N. D. Orloff, and M. Pasquali, "Carbon nanotube thin film patch antennas for wireless communications," Appl. Phys. Lett., Vol. 114, 203102-1-203102-5, 2019. Google Scholar
22. Fujisawa, K., H. J. Kim, H. Muramatsu, T. Hayashi, T. C. Hirschmann, M. S. Dresselhaus, Y. A. Kim, and P. T. Araujo, "A review of double-walled and triple-walled carbon nanotube synthesis and applications," Appl. Sci., Vol. 6, No. 109, 1-32, 2016. Google Scholar
23. Maeng, I., C. Kang, S. J. Oh, and J.-H. Sonb, "Terahertz electrical and optical characteristics of double-walled carbon nanotubes and their comparison with single-walled carbon nanotubes," Applied Physics Letters, Vol. 90, 051914 (1-3), 2007. Google Scholar
24. Hanson, G. W. and J. A. Berres, "Multiwall carbon nanotubes at RF-THz frequencies: Scattering, shielding, effective conductivity, and power dissipation," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 8, 3098-3103, 2011.
doi:10.1109/TAP.2011.2158951 Google Scholar
25. Jurn, Y. N., M. F. Malek, and H. A. Rahim, "Performance assessment of the simulation modeling approach of SWCNT at THz and GHz antenna applications," IEEE 12th Malaysia International Conference on Communications (MICC), 246-251, 2015. Google Scholar