Vol. 88
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-01-10
Modelling of Electric Field Strength Amplification at the Tips of Thin Conductive Rods Arrays
By
Progress In Electromagnetics Research M, Vol. 88, 111-119, 2020
Abstract
Degree of the electric field (EF) amplification at the tips of thin and long conductive rods array has been calculated. It is shown that such amplification depends on the rods height (H) and radius (R), as well as on distance between separate rods in the array. For simulation, an approach to numerical calculation of the EF near conductive rods with a large ratio of height to radius: H/R>102-104 has been proposed. Rods with such parameters may represent carbon nanotubes, channels of breakdowns in insulation, lightning leader channels, lightning rods, etc. The proposed approach is based on the finite integration technique. It uses also the analytical law of decrease of the EF strength and potential of a conductive ellipsoid under potential in the directions perpendicular to the ellipsoid axis and above its tip. As a result, numerical calculations of the EF distribution in systems with such rods were carried out applying calculation grids with steps proportional to the rods length, not their diameters. It permits substantial decrease of the required computational resources such as memory and time.
Citation
Marina Rezinkina, "Modelling of Electric Field Strength Amplification at the Tips of Thin Conductive Rods Arrays," Progress In Electromagnetics Research M, Vol. 88, 111-119, 2020.
doi:10.2528/PIERM19102702
References

1. Cooray, V., "Lightning Protection," The Institution of Engineering and Technology, London, 2010.        Google Scholar

2. Bazelyan, E. M. and Yu. P. Raizer, "Lightning Physics and Lightning Protection," IOP Publishing, Bristol, 2000.        Google Scholar

3. Cole, M. T., K. B. K. Teo, O. Groening, L. Gangloff, P. Legagneux, and W. I. Milne, "Deterministic cold cathode electron emission from carbon nanofibre arrays," Scientific Reports, Vol. 4, 1-5, 2014.        Google Scholar

4. Park, S., A. P. Gupta, S. J. Yeo, J. Jung, S. H. Paik, M. Mativenga, S. H. Kim, J. H. Shin, J. S. Ahn, and J. Ryu, "Carbon nanotube field emitters synthesized on metal alloy substrate by PECVD for customized compact field emission devices to be used in X-ray source applications," Nanomaterials, Vol. 8, 378-1-378-9, 2018.        Google Scholar

5. Bocharov, G. S., A. V. Eletskii, and S. Grigory, "Theory of carbon nanotube (CNT)-based electron field emitters," Nanomaterials, Vol. 3, 393-442, 2013.
doi:10.3390/nano3030393        Google Scholar

6. Collins, C. M., R. J. Parmee, W. I. Milne, and M. T. Cole, "High performance field emitters," Advanced Science, Vol. 3, 8, 2016.        Google Scholar

7. Singer, H., H. Steinbigler, and P. Weiss, "A charge simulation method for the calculation of high voltage fields," IEEE Transactions on Power Apparatus and Systems, Vol. 93, No. 5, 1660-1668, 1974.
doi:10.1109/TPAS.1974.293898        Google Scholar

8. Delves, L. M. and J. L. Mohamed, Computational Methods for Integral Equations, Cambridge University Press, Cambridge, 1985.
doi:10.1017/CBO9780511569609

9. Gibson, W. C., The Method of Moments in Electromagnetics, Chapman and Hall/CRC, Boca Raton, FL, 2008.

10. Volakis, J. L., A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications, IEEE Press, New York, 1998.

11. Taflove, A. and S. Hagness, Computational Electromagnetics: The Finite Difference Time Domain Method, Artech House, Boston, London, 2000.

12. Rezinkina, M. M., "Growth of dendrite branches in polyethylene insulation under a high voltage versus the branch conductivity," Technical Physics, Vol. 50, No. 6, 758-765, 2005.
doi:10.1134/1.1947354        Google Scholar

13. Rezinkina, M., O. Rezinkin, F. D’Alessandro, et al. "Experimental and modelling study of the dependence of corona discharge on electrode geometry and ambient electric field," Journal of Electrostatics, Vol. 87, 79-85, 2017.
doi:10.1016/j.elstat.2017.03.008        Google Scholar

14. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique," Progress In Electromagnetics Research, Vol. 32, 65-87, 2001.
doi:10.2528/PIER00080103        Google Scholar

15. Clemens, M. and T. Weiland, "Regularization of eddy current formulations using discrete grad-div operators," IEEE Transactions on Magnetics, Vol. 38, No. 2, 569-572, 2002.
doi:10.1109/20.996149        Google Scholar

16. Stratton, J. A., Electromagnetic Theory, IEEE Press, NJ, 2007.

17. Berenger, J. P., "Perfectly matched layer for the FDTD solution of wave-structure interaction problems," IEEE Trans. Antennas and Propag., Vol. 44, 110-117, 1996.
doi:10.1109/8.477535        Google Scholar

18. Rezinkina, M. M., "The calculation of the penetration of a low-frequency three-dimensional electric field into heterogeneous weakly conducting objects," Elektrichestvo, No. 8, 50-55, 2003.        Google Scholar

19. Rezinkina, M. M. and O. L. Rezinkin, "Modeling of the electromagnetic wavefront sharpening in a nonlinear dielectric," Technical Physics, Vol. 56, No. 3, 406-412, 2011.
doi:10.1134/S1063784211030169        Google Scholar

20. Bocharov, G. S. and A. V. Eletskii, "Effect of screening on the emissivity of field electron emitters based on carbon nanotubes," Technical Physics, Vol. 50, No. 7, 944-947, 2005.
doi:10.1134/1.1994978        Google Scholar

21. Bocharov, G. S., A. V. Eletskii, and T. J. Sommerer, "Optimization of the parameters of a carbon nanotube-based field-emission cathode," Technical Physics, Vol. 56, No. 4, 540-545, 2011.
doi:10.1134/S1063784211040086        Google Scholar