Vol. 92
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-05-10
Generating Spatially-Variant Metamaterial Lattices Designed from Spatial Transforms
By
Progress In Electromagnetics Research M, Vol. 92, 103-113, 2020
Abstract
Spatial transform techniques like transformation optics and conformal mapping have arisen as the dominant techniques for designing metamaterial devices. However, these techniques only produce the electrical permittivity and permeability as a function of position. The manner in which these functions are converted into physical metamaterial lattices remains elusive, except in some simple or canonical configurations. Metamaterial lattices designed by spatial transforms are composed of elements of different sizes, orientations, and designs. The elements must be distributed and oriented in a manner that makes the final lattice smooth, continuous, have uniform density, be free of unintentional defects, and have minimal distortions to the elements. Any of these would weaken or destroy the electromagnetic properties of the lattice. This paper describes a general purpose method to generate such arbitrary metamaterial lattices. Inputs to the algorithm are the permittivity and permeability functions as well as the baseline metamaterials that can provide the necessary permittivity and permeability values. In prior research, we reported a simple finite-difference technique for calculating the permittivity and permeability functions for arbitrary shaped devices using transformation optics. The present work is illustrated by generating an electromagnetic cloak of arbitrary shape that was designed using the previously reported technique. The final metamaterial cloak is simulated using the finite-difference time-domain method and performance compared to other cloaks reported in the literature.
Citation
Eric A. Berry, and Raymond C. Rumpf, "Generating Spatially-Variant Metamaterial Lattices Designed from Spatial Transforms," Progress In Electromagnetics Research M, Vol. 92, 103-113, 2020.
doi:10.2528/PIERM19103004
References

1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, New York, N.Y., Jun. 2006.
doi:10.1126/science.1125907        Google Scholar

2. Kwon, D.-H. and D. H. Werner, "Transformation electromagnetics: An overview of the theory and applications," IEEE Antennas and Propagation Magazine, Vol. 52, No. 1, 24-46, 2010.
doi:10.1109/MAP.2010.5466396        Google Scholar

3. Leonhardt, U. and T. G. Philbin, "Transformation optics and the geometry of light," Progress in Optics, Vol. 53, No. 8, 69-152, 2009.
doi:10.1016/S0079-6638(08)00202-3        Google Scholar

4. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nature Materials, Vol. 8, No. 7, 568, 2009.
doi:10.1038/nmat2461        Google Scholar

5. Ergin, T., N. Stenger, Brenner, J. B. Pendry, and M. Wegener, "Three-dimensional invisibility cloak at optical wavelengths," Science, 1186351, 2010.        Google Scholar

6. Gabrielli, L. H., J. Cardenas, C. B. Poitras, and M. Lipson, "Silicon nanostructure cloak operating at optical frequencies," Nature Photonics, Vol. 3, No. 8, 461, 2009.
doi:10.1038/nphoton.2009.117        Google Scholar

7. Liu, R., C. Ji, J. Mock, J. Chin, T. Cui, and D. Smith, "Broadband ground-plane cloak," Science, Vol. 323, No. 5912, 366-369, 2009.
doi:10.1126/science.1166949        Google Scholar

8. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photonics and Nanostructures-fundamentals and Applications, Vol. 6, No. 1, 87-95, 2008.        Google Scholar

9. Li, J. and J. B. Pendry, "Hiding under the carpet: a new strategy for cloaking," Physical Review Letters, Vol. 101, No. 20, 203901, 2008.
doi:10.1103/PhysRevLett.101.203901        Google Scholar

10. Ma, H. F. and T. J. Cui, "Three-dimensional broadband and broad-angle transformation-optics lens," Nature communications, Vol. 1, 124, 2010.
doi:10.1038/ncomms1126        Google Scholar

11. Roberts, D., N. Kundtz, and D. Smith, "Optical lens compression via transformation optics," Optics Express, Vol. 17, No. 19, 16535-16542, 2009.
doi:10.1364/OE.17.016535        Google Scholar

12. Rahm, M., D. Roberts, J. Pendry, and D. Smith, "Transformation-optical design of adaptive beam bends and beam expanders," Optics Express, Vol. 16, No. 15, 11555-11567, 2008.
doi:10.1364/OE.16.011555        Google Scholar

13. Rahm, M., S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, "Optical design of reflectionless complex media by finite embedded coordinate transformations," Physical Review Letters, Vol. 100, No. 6, 063903, 2008.
doi:10.1103/PhysRevLett.100.063903        Google Scholar

14. Kwon, D.-H. and D. H. Werner, "Polarization splitter and polarization rotator designs based on transformation optics," Optics Express, Vol. 16, No. 23, 18731-18738, 2008.
doi:10.1364/OE.16.018731        Google Scholar

15. Jiang, W. X., T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, "Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational b-spline surfaces," Applied Physics Letters, Vol. 92, No. 26, 264101, 2008.
doi:10.1063/1.2951485        Google Scholar

16. Yang, J., M. Huang, C. Yang, Z. Xiao, and J. Peng, "Metamaterial electromagnetic concentrators with arbitrary geometries," Optics Express, Vol. 17, No. 22, 19656-19661, 2009.
doi:10.1364/OE.17.019656        Google Scholar

17. Schurig, D., J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628        Google Scholar

18. Hu, J., X. Zhou, and G. Hu, "Design method for electromagnetic cloak with arbitrary shapes based on laplace's equation," Optics Express, Vol. 17, No. 3, 1308-1320, 2009.
doi:10.1364/OE.17.001308        Google Scholar

19. Berry, E. A., J. J. Gutierrez, and R. C. Rumpf, "Design and simulation of arbitrarily-shaped transformation optic devices using a simple finite-difference method," Progress In Electromagnetics Research, Vol. 68, 1-16, 2016.        Google Scholar

20. Chen, H., C. T. Chan, and Sheng, "Transformation optics and metamaterials," Nature Materials, Vol. 9, No. 5, 387, 2010.
doi:10.1038/nmat2743        Google Scholar

21. Mei, Z.-L., J. Bai, T. M. Niu, and T.-J. Cui, "A planar focusing antenna design with the quasi-conformal mapping," Progress In Electromagnetics Research, Vol. 13, 261-273, 2010.
doi:10.2528/PIERM10053102        Google Scholar

22. Pendry, J. B., A. Holden, W. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, No. 25, 4773, 1996.
doi:10.1103/PhysRevLett.76.4773        Google Scholar

23. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002        Google Scholar

24. Pedrola, G. L., Beam Propagation Method for Design of Optical Waveguide Devices, John Wiley & Sons, 2015.
doi:10.1002/9781119083405

25. Basser, J., J. Mattiello, and D. LeBihan, "Mr diffusion tensor spectroscopy and imaging," Biophysical Journal, Vol. 66, No. 1, 259-267, 1994.
doi:10.1016/S0006-3495(94)80775-1        Google Scholar

26. Nye, J. F., Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford University Press, 1985.

27. Kuprel, B. and A. Grbic, "Anisotropic inhomogeneous metamaterials using nonuniform transmission-line grids aligned with the principal axes," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 358-361, 2012.
doi:10.1109/LAWP.2012.2191257        Google Scholar

28. Lam, T. A., D. C. Vier, J. A. Nielsen, C. G. Parazzoli, and M. H. Tanielian, "Steering phased array antenna beams to the horizon using a buckyball nim lens," Proceedings of the IEEE, Vol. 99, No. 10, 1755-1767, 2011.
doi:10.1109/JPROC.2011.2128290        Google Scholar

29. Ansys, H., "v15," ANSYS Corporation Software, Pittsburgh, PA, USA, 2014.        Google Scholar

30. Smith, D. R., S. Schultz, Markoš, and C. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, No. 19, 195104, 2002.
doi:10.1103/PhysRevB.65.195104        Google Scholar

31. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 1, 016608, 2004.
doi:10.1103/PhysRevE.70.016608        Google Scholar

32. Liu, R., T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, "Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory," Physical Review E, Vol. 76, No. 2, 026606, 2007.
doi:10.1103/PhysRevE.76.026606        Google Scholar

33. Smith, D., D. Vier, T. Koschny, and C. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, No. 3, 036617, 2005.
doi:10.1103/PhysRevE.71.036617        Google Scholar

34. Barton, J. H., C. R. Garcia, E. A. Berry, R. Salas, and R. C. Rumpf, "3-d printed all-dielectric frequency selective surface with large bandwidth and field of view," IEEE Transactions on Antennas and Propagation, Vol. 63, 1032-1039, March 2015.
doi:10.1109/TAP.2015.2388541        Google Scholar

35. Fraser, A. S., "Simulation of genetic systems by automatic digital computers vi. epistasis," Australian Journal of Biological Sciences, Vol. 13, No. 2, 150-162, 1960.
doi:10.1071/BI9600150        Google Scholar

36. Clerc, M., Particle Swarm Optimization, Vol. 93, John Wiley & Sons, 2010.

37. Rumpf, R. C., C. R. Garcia, E. A. Berry, and J. H. Barton, "Finite-difference frequency-domain algorithm for modeling electromagnetic scattering from general anisotropic objects," Progress In Electromagnetics Research, Vol. 61, 55-67, 2014.
doi:10.2528/PIERB14071606        Google Scholar

38. Rumpf, R. C. and J. Pazos, "Synthesis of spatially variant lattices," Optics Express, Vol. 20, No. 14, 15263-15274, 2012.
doi:10.1364/OE.20.015263        Google Scholar

39. Rumpf, R. C., "Engineering the dispersion and anisotropy of periodic electromagnetic structures," Solid State Physics, Vol. 66, 213-300, Elsevier, 2015.        Google Scholar

40. Rumpf, R. C., J. Pazos, C. R. Garcia, L. Ochoa, and R. Wicker, "3d printed lattices with spatially variant self-collimation," Progress In Electromagnetics Research, Vol. 139, 1-15, 2013.
doi:10.2528/PIER13030507        Google Scholar

41. Rumpf, R. C., J. J. Pazos, J. L. Digaum, and S. M. Kuebler, "Spatially variant periodic structures in electromagnetics," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 373, No. 2049, 20140359, 2015.
doi:10.1098/rsta.2014.0359        Google Scholar

42. Greville, T., "Some applications of the pseudoinverse of a matrix," SIAM Review, Vol. 2, No. 1, 15-22, 1960.
doi:10.1137/1002004        Google Scholar

43. Noble, B. and J. W. Daniel, Applied Linear Algebra, 3rd Ed., Prentice Hall, 1988.

44. Sacks, Z. S., D. M. Kingsland, R. Lee, and J.-F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 12, 1460-1463, 1995.
doi:10.1109/8.477075        Google Scholar