Vol. 88
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-01-08
Ground Plane Effect Suppression Method to Design a Low-Profile Printed UWB Antenna
By
Progress In Electromagnetics Research M, Vol. 88, 91-100, 2020
Abstract
This paper presents a technique to design a very small planar antenna for ultra-wideband (UWB) communication applications. To cover UWB frequency range by a small-size antenna, the ground plane influence on the antenna impedance bandwidth is suppressed at middle and higher frequencies. To accomplish this purpose, a rectangular and several stepped slots are etched on the conventional radiator. Also, a tuning stub is printed in the rectangular slot, and its length is optimized. This technique decreases current distribution on the ground plane at higher frequencies, and the impedance matching of the antenna is significantly influenced by the radiating patch. The antenna has a compact size of 25 × 25 × 1.6 mm3. It can provide a wide impedance bandwidth from 2.8 to 15.4 GHz (|S11| < -10 dB) which covers the entire UWB spectrum (3.1-10.6 GHz). Two prototypes of the antenna were fabricated and measured. The impedance matching, group delay, fidelity factor, and the antenna radiation characteristics, including co- and cross-polarized far-field patterns and realized gain were analyzed with numerical simulation and experimental measurement. Measured data are in good agreement with the simulated ones. Based on the obtained frequency- and time-domain characteristics, the designed antenna is an excellent candidate for UWB wireless devices.
Citation
Aliakbar Dastranj Faezeh Bahmanzadeh , "Ground Plane Effect Suppression Method to Design a Low-Profile Printed UWB Antenna," Progress In Electromagnetics Research M, Vol. 88, 91-100, 2020.
doi:10.2528/PIERM19110105
http://www.jpier.org/PIERM/pier.php?paper=19110105
References

1. Pfeiffer, C., T. Steffen, and G. Kakas, "Uniform beamwidth UWB feed antenna using lossy transmission lines," Progress In Electromagnetics Research, Vol. 165, 119-130, 2019.
doi:10.2528/PIER19081202

2. Raad, H. K., "An UWB antenna array for flexible IoT wireless systems," Progress In Electromagnetics Research, Vol. 162, 109-121, 2018.
doi:10.2528/PIER18060804

3. Ahmed, O. and A. R. Sebak, "A printed monopole antenna with two steps and a circular slot for UWB applications," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 411-413, 2008.
doi:10.1109/LAWP.2008.2001026

4. Oraizi, H. and S. Hedayati, "Miniaturized UWB monopole microstrip antenna design by the combination of Giusepe Peano and Sierpinski carpet fractals," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 67-70, 2011.
doi:10.1109/LAWP.2011.2109030

5. Rezaeieh, S. A., A. M. Abbosh, and M. A. Antoniades, "Compact CPW-fed planar monopole antenna with wide circular polarization bandwidth," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 1295-1298, 2013.
doi:10.1109/LAWP.2013.2284003

6. Abbosh, A. M. and M. E. Bialkowsky, "Design of ultrawideband planar monopole antennas of circular and elliptical shape," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 17-23, 2008.
doi:10.1109/TAP.2007.912946

7. Koohestani, M. and M. Golpour, "U-shaped microstrip patch antenna with novel parasitic tuning stubs for ultra wideband applications," IET Microw. Antennas Propag., Vol. 4, No. 7, 938-946, 2010.
doi:10.1049/iet-map.2009.0049

8. Eldek, A. A., A. Z. Elsherbeni, and C. E. Smith, "Wide-band modified printed bow-tie antenna with single and dual polarization for C- and X-band applications," IEEE Trans. Antennas Propag., Vol. 53, No. 9, 3067-3072, 2005.
doi:10.1109/TAP.2005.851870

9. Chen, G.-Y. and J.-S. Sun, "A printed dipole antenna with microstrip tapered balun," Microw. Opt. Technol. Lett., Vol. 40, No. 4, 344-346, 2004.
doi:10.1002/mop.11374

10. Zheng, G., A. A. Kishk, A. B. Yakovlev, and A. W. Glisson, "Simplified feed for a modified printed Yagi antenna," Electron. Lett., Vol. 40, No. 8, 464-466, 2004.
doi:10.1049/el:20040348

11. Kaneda, N., W. Deal, Y. Qian, R. Waterhouse, and T. Itoh, "A broad-band planar quasi-Yagi antenna," IEEE Trans. Antennas Propag., Vol. 50, No. 8, 1158-1160, 2002.
doi:10.1109/TAP.2002.801299

12. Deal, W., N. Kaneda, J. Sor, Y. Qian, and T. Itoh, "A new quasi-Yagi antenna for planar active antenna arrays," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 6, 910-918, 2000.
doi:10.1109/22.846717

13. Lee, H. L., H. J. Lee, J. G. Yook, and H. K. Park, "Broadband planar antenna having round corner rectangular wide slot," Proc. IEEE Antennas and Propagation Society Int. Symp., Vol. 2, 460-463, Jun. 16–21, 2002.

14. Chen, H.-D., "Broadband CPW-fed square slot antennas with a widened tuning stub," IEEE Trans. Antennas Propag., Vol. 51, No. 4, 1982-1986, Aug. 2003.
doi:10.1109/TAP.2003.814747

15. Chair, R., A. A. Kishk, and K. F. Lee, "Ultrawideband coplanar waveguide-fed rectangular slot antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 3, 227-229, 2004.
doi:10.1109/LAWP.2004.836580

16. Liu, Y. F., K. L. Lau, Q. Xue, and C. H. Chan, "Experimental studies of printed wide-slot antenna for wide-band applications," IEEE Antennas Wirel. Propag. Lett., Vol. 3, 273-275, 2004.
doi:10.1109/LAWP.2004.837510

17. Eskandari, H., M. R. Booket, M. Kamyab, and M. Veysi, "Investigation on a class of wideband printed slot antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 1221-1224, 2010.
doi:10.1109/LAWP.2010.2100360

18. Liu, W. X., Y. Z. Yin, W. L. Xu, and S. L. Zuo, "Compact open-slot antenna with bandwidth enhancement," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 850-1224, 2011.

19. Sung, Y., "Bandwidth enhancement of a microstrip line-fed printed wide-slot antenna with a parasitic center patch," IEEE Trans. Antennas Propag., Vol. 60, No. 4, 1712-1716, Apr. 2012.
doi:10.1109/TAP.2012.2186224

20. Xu, K., Z. Zhu, H. Li, J. Huangfu, C. Li, and L. Ran, "A printed single-layer UWB monopole antenna with extended ground plane stubs," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 237-240, 2013.
doi:10.1109/LAWP.2013.2247555

21. Siddiqui, J. Y., C. Saha, and Y. M. M. Antar, "A novel ultrawideband (UWB) printed antenna with a dual complementary characteristic," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 974-977, 2015.
doi:10.1109/LAWP.2014.2388272

22. Unnikrishnan, D., D. Kaddour, S. Tedjini, E. Bihar, and M. Saadaoui, "CPW-fed inkjet printed UWB antenna on ABS-PC for integration in molded interconnect devices technology," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 1124-1128, 2015.

23. Wu, Q., R. Jin, J. Geng, and M. Ding, "Pulse preserving capabilities of printed circular disk monopole antennas with different grounds for the specified input signal forms," IEEE Trans. Antennas Propag., Vol. 55, No. 10, 2866-2873, Oct. 2007.
doi:10.1109/TAP.2007.905854

24. Quintero, G., J. F. Zurcher, and A. K. Skrivervik, "System fidelity factor: A new method for comparing UWB antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 7, 2502-2512, 2011.
doi:10.1109/TAP.2011.2152322