1. Chrisostomidis, C. E. and S. Lucyszyn, "On the theory of chained-function filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 10, 3142-3151, Oct. 2005.
doi:10.1109/TMTT.2005.855358 Google Scholar
2. Guglielmi, M. and G. Connor, "Chained function filters," IEEE Microw. Guided Wave Lett., Vol. 7, No. 12, 390-392, Dec. 1997.
doi:10.1109/75.645181 Google Scholar
3. Chrisostomidis, C. E. and S. Lucyszyn, "Seed function combination selection for chained function filters," IET Microwaves, Antennas and Propagation, Vol. 4, 799-807, Jun. 2010.
doi:10.1049/iet-map.2009.0508 Google Scholar
4. Chrisostomidis, C. E., M. Guglielmi, P. Young, and S. Lucyszyn, "Application of chained functions to low-cost microwave band-pass filters using standard PCB etching techniques," 2000 30th European Microwave Conference, Oct. 2000. Google Scholar
5. Lim, Y. P., Y. L. Toh, S. Cheab, G. S. Ng, and P. W. Wong, "Chained-function waveguide filter for 5G and beyond," TENCON 2018 --- 2018 IEEE Region 10 Conference, 2018. Google Scholar
6. Lim, Y. P., Y. L. Toh, S. Cheab, S. Lucyszyn, and P. W. Wong, "Coupling matrix synthesis and design of a chained-function waveguide filter," 2018 Asia-Pacific Microwave Conference (APMC), 2018. Google Scholar
7. Perenic, G., N. Stamenkovic, N. Stojanovic, and N. Denic, "Chained-function filter synthesis based on the modified Jacobi polynomials," Radioengineering, Vol. 27, No. 4, 1112-1118, 2018.
doi:10.13164/re.2018.1112 Google Scholar
8. Stojanovic, N., N. Stamenkovic, and I. Krstic, "Chained-function filter synthesis based on the Legendre polynomials," Circuits, Systems, and Signal Processing, Vol. 37, No. 5, 2001-2020, Aug. 2017.
doi:10.1007/s00034-017-0651-1 Google Scholar
9. Zverev, A. I., Handbook of Filter Synthesis, Wiley, New York, 1967.
10. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems: Fundamentals, Design, and Applications, 2nd Ed., Wiley, New York, Apr. 2018.
doi:10.1002/9781119292371
11. Hunter, I., Theory and Design of Microwave Filters, (IET Electromagnetic Waves Series), 370, 2006.
12. Xu, J., "Compact quasi-elliptic response wideband bandpass filter with four transmission zeros," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 3, 169-171, 2015.
doi:10.1109/LMWC.2015.2390571 Google Scholar
13. Chen, S., L.-F. Shi, G.-X. Liu, and J.-H. Xun, "An alternate circuit for narrow-bandpass elliptic microstrip filter design," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 7, 624-626, 2017.
doi:10.1109/LMWC.2017.2711528 Google Scholar
14. Chen, C.-J., "A coupled-line coupling structure for the design of quasi-elliptic bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 4, 1921-1925, 2018.
doi:10.1109/TMTT.2017.2783378 Google Scholar
15. Zhang, F., J. Li, P. Zhao, G. Huang, and J. Xu, "A wideband microstrip elliptic bandpass filter with flexibly tunable bandwidth," 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2018. Google Scholar
16. Dimopoulos, H. G., "Optimal use of some classical approximations in filter design," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 54, No. 9, 780-784, 2007.
doi:10.1109/TCSII.2007.900345 Google Scholar
17. Wang, L. and L. Jin, "A quasi-elliptic microstrip bandpass filter using modified anti-parallel coupled-line," Progress In Electromagnetics Research, Vol. 138, 245-253, 2013. Google Scholar
18. Kuo, J.-T., S.-C. Tang, and S.-H. Lin, "Quasi-elliptic function bandpass filter with upper stopband extension and high rejection level using cross-coupled stepped-impedance resonators ," Progress In Electromagnetics Research, Vol. 114, 395-405, 2011.
doi:10.2528/PIER11011002 Google Scholar
19. Poularikas, A., The Handbook of Formulas and Tables for Signal Processing, CRC Press, Boca Raton, Fla., 1999.
20. Chisostomidis, C. E., "Chained function filters --- Theory and applications,", Ph.D. dissertation, Univ. Surrey, Surrey, U.K., 2003. Google Scholar
21. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 1, 1-10, Jan. 2003.
doi:10.1109/TMTT.2002.806937 Google Scholar
22. Cameron, R., "General coupling matrix synthesis methods for Chebyshev filtering functions," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 4, 433-442, Apr. 1999.
doi:10.1109/22.754877 Google Scholar
23. Kocbach, J. and K. Folgero, "Design procedure for waveguide filters with cross-couplings," IEEE MTT-S Int Microwave Symp. Dig., Vol. 3, 1449-1452, Jun. 2002. Google Scholar
24. Huang, Q. and Z. Wu, "A compact six-order folded-waveguide resonator filter," 2018 IEEE MTT-S International Wireless Symposium (IWS), 2018. Google Scholar
25. Kojima, H., M. Nakahori, K. Matsutani, K. Kuroda, and K. Onaka, "A compact 28GHz bandpass filter using quartz folded waveguide," 2018 IEEE MTT-S International Microwave Symposium (IMS), 2018. Google Scholar
26. Matsutani, K., et al. "Miniaturized quartz waveguide filter using double-folded structure," 2019 IEEE MTT-S International Microwave Symposium (IMS), 2019. Google Scholar