Vol. 89
Latest Volume
All Volumes
PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-01-27
A Filtering Dielectric Resonator Antenna with High Band-Edge Selectivity
By
Progress In Electromagnetics Research M, Vol. 89, 63-71, 2020
Abstract
A filtering rectangle dielectric resonator antenna (DRA) with high band-edge selectivity is proposed in this paper. The DRA is fed by a simple hybrid feeding structure consisting of a microstrip-coupled slot on the bottom and a thin metallic strip on the side of DRA to excite the fundamental TEy1δ1 mode. The feeding structure establishes a cross-coupled mechanism which includes electric and magnetic coupling; thus, introducing two radiation nulls at the band edge without any filtering circuits. By using the designed hybrid feeding structure, a bandpass filtering response is obtained. For enhancing band-edge selectivity, a shorted stub is introduced to weaken the coupling between the two microstrip stubs of the feeding structure. A wide impedance bandwidth of 19% and a flat gain of around 5.6 dBi are realized. To validate the design, a prototype is fabricated and measured, showing a favorable agreement with the simulated results.
Citation
Yang Gao, Yong-Chang Jiao, Zi-Bin Weng, Chi Zhang, and Yi-Xuan Zhang, "A Filtering Dielectric Resonator Antenna with High Band-Edge Selectivity," Progress In Electromagnetics Research M, Vol. 89, 63-71, 2020.
doi:10.2528/PIERM19112703
References

1. Xie, B. and H. Yu, "Miniaturized microstrip lowpass filter with ultra-wide stopband performance using trapezoid patch resonators," Progress In Electromagnetics Research Letters, Vol. 87, 39-43, 2019.
doi:10.2528/PIERL19062606

2. Deng, H. W., T. Xu, and F. Liu, "Broadband pattern-reconfigurable filtering microstrip antenna with quasi-Yagi structure," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 7, 1127-1131, 2018.
doi:10.1109/LAWP.2018.2825471

3. Hua, C., X. Jin, and M. Liu, "Design of compact vertically stacked SIW end-fire filtering antennas with transmission zeros," Progress In Electromagnetics Research Letters, Vol. 87, 67-73, 2019.
doi:10.2528/PIERL19072205

4. Deng, J. Y., S. Hou, L. Zhao, and L. X. Guo, "Wideband-to-narrowband tunable monopole antenna with integrated bandpass filters for UWB/WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2734-3737, 2017.
doi:10.1109/LAWP.2017.2743258

5. Min, X.-L. and H. Zhang, "Compact filtering antenna based on dumbbell-shaped resonator," Progress In Electromagnetics Research Letters, Vol. 69, 51-57, 2017.
doi:10.2528/PIERL17042803

6. Hsieh, C.-Y., C.-H. Wu, and T.-G. Ma, "A compact dual-band filtering patch antenna using step impedance resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1056-1059, 2015.
doi:10.1109/LAWP.2015.2390033

7. Deng, J. and L. Feng, "Dual-band microstrip filtering antennas with symmetrical slots," Progress In Electromagnetics Research Letters, Vol. 86, 13-19, 2019.
doi:10.2528/PIERL19050404

8. Pan, Y. M., P. Hu, X. Y. Zhang, and S. Y. Zheng, "A low-profile high-gain and wideband filtering antenna with metasurface," IEEE Transactions on Antennas & Propagation, Vol. 64, No. 5, 2010-2016, 2016.
doi:10.1109/TAP.2016.2535498

9. Bakshi, G., A. Vaish, and R. S. Yaduvanshi, "Two-layer sapphire rectangular dielectric resonator antenna for rugged communications," Progress In Electromagnetics Research Letters, Vol. 85, 73-80, 2019.
doi:10.2528/PIERL19030602

10. Lu, L., Y.-C. Jiao, H. Zhang, and R. Wang, "Wideband circularly polarized antenna with stairshaped dielectric resonator and open-ended slot ground," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1755-1758, 2016.
doi:10.1109/LAWP.2016.2532931

11. Al-Azza, A. A., N. Malalla, F. J. Harackiewicz, and K. Han, "Stacked conical-cylindrical hybrid dielectric resonator antenna for improved ultrawide bandwidth," Progress In Electromagnetics Research Letters, Vol. 79, 79-86, 2018.
doi:10.2528/PIERL18081008

12. Hu, P., Y. M. Pan, X. Y. Zhang, and S. Y. Zheng, "Broadband filtering dielectric resonator antenna with wide stopband," IEEE Transactions on Antennas & Propagation, Vol. 5, No. 4, 2079-2084, 2017.
doi:10.1109/TAP.2017.2670438

13. Tang, H., C. Tong, and J.-X. Chen, "Differential dual-polarized filtering dielectric resonator antenna," IEEE Transactions on Antennas & Propagation, Vol. 66, No. 8, 4298-4302, 2018.
doi:10.1109/TAP.2018.2836449

14. Hu, P., Y. M. Pan, and K. W. Leung, "Wide-/dual-band omnidirectional filtering dielectric resonator antennas," IEEE Transactions on Antennas & Propagation, Vol. 66, No. 5, 2622-2627, 2018.
doi:10.1109/TAP.2018.2809706

15. Pan, Y. M., P. Hu, and X. Y. Zhang, "Compact single-/dual-polarized filtering dielectric resonator antennas," IEEE Transactions on Antennas & Propagation, Vol. 66, No. 9, 4474-4484, 2018.
doi:10.1109/TAP.2018.2845457

16. Hu, P., Y. M. Pan, X. Y. Zhang, and B. Hu, "A compact quasi-isotropic dielectric resonator antenna with filtering response," IEEE Transactions on Antennas & Propagation, Vol. 67, No. 5, 2622-2627, 2018.
doi:10.1109/TAP.2018.2809706

17. Petosa, A., Dielectric Resonator Antenna Handbook, Artech House, London, 2007.

18. Ludwig, R., RF Circuit Design-Theory and Applications, Prentice Hall, Upper Saddle River, 2000.

19. Hong, J. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001.
doi:10.1002/0471221619

20. Thomas, J. B., "Cross-coupling in coaxial cavity filters-a tutorial overview," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 4, 1368-1376, 2003.
doi:10.1109/TMTT.2003.809180