Vol. 89
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-01-31
A Novel Wideband Microstrip Patch Antenna with Non-Uniform Feed Based on Model Predictive
By
Progress In Electromagnetics Research M, Vol. 89, 101-109, 2020
Abstract
A novel wideband microstrip patch antenna with nonuniform transmission line feed is presented using model predictive control. Nonlinear model predictive control (NMPC) is used to achieve a nonuniform transmission line that matches with the microstrip patch antenna. The transmission line is extended using cosine expansion with the impedance differential equation then being used as the dynamic NMPC equation to find the unknown coefficients of that cosine expansion. The transmission line is designed such that the impedance of the input port matches the impedance of the microstrip antenna at the resonance frequency and its adjacent frequencies. The proposed antenna's impedance is 5.15-5.85 GHz. In this bandwidth, the radiation pattern is stable; the cross polarization and back lobe are -30 dB and -20 dB respectively. The error in the impedance bandwidth is about 4.2%. The simulation and measurement results are considered satisfactory.
Citation
Maryam Farahani Sajad Mohammad-Ali-Nezhad , "A Novel Wideband Microstrip Patch Antenna with Non-Uniform Feed Based on Model Predictive," Progress In Electromagnetics Research M, Vol. 89, 101-109, 2020.
doi:10.2528/PIERM19112706
http://www.jpier.org/PIERM/pier.php?paper=19112706
References

1. Rabobason, Y. G., G. P. Rigas, S. Swaisaenyakorn, B. Mirkhaydarov, B. Ravelo, M. Shkunov, P. R. Young, and N. Benjelloun, "Design and synthesis of flexible switching 1×2 antenna array on Kapton substrate," Eur. Phys. J. Appl. Phys. (EPJAP), Vol. 74, No. 3, 1-10, 2016.

2. Rabobason, Y. G., G. P. Rigas, S. Swaisaenyakorn, B. Mirkhaydarov, B. Ravelo, M. Shkunov, P. R. Young, and N. Benjelloun, "Design of flexible passive antenna array on Kapton substrate," Progress In Electromagnetics Research C, Vol. 63, 105-117, 2016.
doi:10.2528/PIERC15120906

3. Cheng, B., Z. Du, and D. Huang, "A broadband low-profile multimode microstrip antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1332-1336, July 2019.
doi:10.1109/LAWP.2019.2915963

4. Tiwari, R. N., P. Singh, and B. K. Kanaujia, "Butter fly shape compact microstrip antenna for wideband applications," Progress In Electromagnetics Research Letters, Vol. 69, 45-50, 2017.
doi:10.2528/PIERL17042703

5. Wi, S., Y. Lee, and J. Yook, "Wideband microstrip patch antenna with U-shaped parasitic elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1196-1199, April 2007.
doi:10.1109/TAP.2007.893427

6. Cao, Y., et al., "Broadband and high-gain microstrip patch antenna loaded with parasitic mushroom-type structure," IEEE Antennas and Wireless Propagation Letters, Vol. 18, 1405-1409, 2019.
doi:10.1109/LAWP.2019.2917909

7. Weigand, S., G. H. Huff, K. H. Pan, and J. T. Bernhard, "Analysis and design of broad-band single-layer rectangular U-slot microstrip patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 3, 457-468, March 2003.
doi:10.1109/TAP.2003.809836

8. Liu, S., W. Wu, and D. Fang, "Single-feed dual-layer dual-band E-shaped and U-slot patch antenna for wireless communication application," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 468-471, 2016.
doi:10.1109/LAWP.2015.2453329

9. Li, M. and K. Luk, "A differential-fed UWB antenna element with unidirectional radiation," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3651-3656, August 2016.
doi:10.1109/TAP.2016.2565726

10. Islam, M. T., M. N. Shakib, and N. Misran, "Design analysis of high gain wideband L-probe fed microstrip patch antenna," Progress In Electromagnetics Research, Vol. 95, 397-407, 2009.
doi:10.2528/PIER09080204

11. Klionovski, K. and A. Shamim, "Physically connected stacked patch antenna design with 100% bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3208-3211, 2017.
doi:10.1109/LAWP.2017.2768599

12. Sharma, R., A. Kandwal, and S. K. Khah, "Wideband DGS circular ring microstrip antenna design using fuzzy approach with suppressed cross-polar radiations," Progress In Electromagnetics Research C, Vol. 42, 177-190, 2013.
doi:10.2528/PIERC13061504

13. Wong, H., K. K. So, and X. Gao, "Bandwidth enhancement of a monopolar patch antenna with V-shaped slot for car-to-car and WLAN communications," IEEE Transactions on Vehicular Technology, Vol. 65, No. 3, 1130-1136, March 2016.
doi:10.1109/TVT.2015.2409886

14. Liu, N., L. Zhu, W. Choi, and X. Zhang, "A low-profile aperture-coupled microstrip antenna with enhanced bandwidth under dual resonance," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 3, 1055-1062, March 2017.
doi:10.1109/TAP.2017.2657486

15. Lu, W., Q. Li, S. Wang, and L. Zhu, "Design approach to a novel dual-mode wideband circular sector patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 10, 4980-4990, October 2017.
doi:10.1109/TAP.2017.2734073

16. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2011.

17. Khalaj-Amirhosseini, M., "Wideband or multiband complex impedance matching using microstrip nonuniform transmission lines," Progress In Electromagnetics Research, Vol. 66, 15-25, 2006.

18. Jin, T., H. Wei, D. L. M. Nzongo, and Y. Zhang, "Model predictive control strategy for NPC grid-connected inverters in unbalanced grids," Electronics Letters, Vol. 52, 1248-1250, 2016.
doi:10.1049/el.2016.1285

19. Novak, M., U. M. Nyman, T. Dragicevic, and F. Blaabjerg, "Analytical design and performance validation of finite set MPC regulated power converters," IEEE Transactions on Industrial Electronics, Vol. 66, 2004-2014, March 2019.
doi:10.1109/TIE.2018.2838073

20. Ajose, S. O., "Design formulas for impedance matching using a Hermite line," IEE Proceedings H — Microwaves, Antennas and Propagation, Vol. 133, 319-320, August 1986.
doi:10.1049/ip-h-2.1986.0056

21. Eudes, T., B. Ravelo, and A. Louis, "Transient response characterization of the high-speed interconnection RLCG-model for the signal integrity analysis," Progress In Electromagnetics Research, Vol. 112, 183-197, 2011.
doi:10.2528/PIER10111805

22. Grune, L. and J. Pannek, Nonlinear Model Predictive Control, Springer International Publishing AG, Switzerland, 2017.
doi:10.1007/978-3-319-46024-6