1. Mobashsher, A. T. and A. Abbosh, "Utilizing symmetry of planar ultra-wideband antennas for size reduction and enhanced performance," IEEE Antennas Propag. Mag., 2015. Google Scholar
2. Liu, Y., et al. "Some recent developments of microstrip antenna," International Journal of Antennas and Propagation, 2012. Google Scholar
3. Cicchetti, R., A. Faraone, D. Caratelli, and M. Simeoni, "Wideband, multiband, tunable, and smart Wideband, multiband, tunable, and smart," International Journal of Antennas and Propagation,, 2013. Google Scholar
4. First report and order. Revision of part 15 of the commission’s rule regarding "Ultra wide band transmission system FCC 02-48,", Federal Communications Commission, 2002. Google Scholar
5. Aiello, G. R. and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microw. Mag., 2003. Google Scholar
6. Liu, W. X., Y. Z. Yin, W. L. Xu, and S. L. Zuo, "Compact open-slot antenna with bandwidth enhancement," IEEE Antennas Wirel. Propag. Lett., 2011. Google Scholar
7. Sung, Y., "Bandwidth enhancement of a microstrip line-fed printed wide-slot antenna with a parasitic center patch," IEEE Trans. Antennas Propag., 2012. Google Scholar
8. Xu, K., Z. Zhu, H. Li, J. Huangfu, C. Li, and L. Ran, "A printed single-layer UWB monopole antenna with extended ground plane stubs," IEEE Antennas Wirel. Propag. Lett., 2013. Google Scholar
9. Dastranj, A. and F. Bahmanzadeh, "A compact UWB antenna design using rounded inverted L-shaped slots and beveled asymmetrical patch," Progress In Electromagnetics Research C, Vol. 80, 131-140, 2018.
doi:10.2528/PIERC17111702 Google Scholar
10. Siddiqui, J. Y., C. Saha, and Y. M. M. Antar, "A novel ultrawideband (UWB) printed antenna with a dual complementary characteristic," IEEE Antennas Wirel. Propag. Lett., 2015. Google Scholar
11. Sahoo, S., M. N. Mohanty, and L. P. Mishra, "Bandwidth improvement of compact planar antenna for UWB application with dual notch band performance using parasitic resonant structure," Progress In Electromagnetics Research, Vol. 66, 29-39, 2018. Google Scholar
12. Ram Krishna, R. V. S. and R. Kumar, "Slotted ground microstrip antenna with FSS reflector for high-gain horizontal polarisation," Electron. Lett., 2015. Google Scholar
13. Yahya, R., A. Nakamura, M. Itami, and T. A. Denidni, "A novel UWB FSS-based polarization diversity antenna," IEEE Antennas Wirel. Propag. Lett., 2017. Google Scholar
14. Kundu, S., A. Chatterjee, S. K. Jana, and S. K. Parui, "A compact umbrella-shaped UWB antenna with gain augmentation using frequency selective surface," Radioengineering, 2018. Google Scholar
15. Ranga, Y., K. P. Esselle, L. Matekovits, and S. G. Hay, "Increasing the gain of a semicircular slot UWB antenna using an FSS reflector," Proceedings of the 2012 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, APWC’12, 2012. Google Scholar
16. Majidzadeh, M., C. Ghobadi, and J. Nourinia, "Novel single layer reconfigurable frequency selective surface with UWB and multi-band modes of operation," AEU --- Int. J. Electron. Commun., 2016. Google Scholar
17. Ranga, Y., L. Matekovits, K. P. Esselle, and A. R. Weily, "Multioctave frequency selective surface reflector for ultrawideband antennas," IEEE Antennas Wirel. Propag. Lett., 2011. Google Scholar
18. Hussain, T., Q. Cao, J. K. Kayani, and I. Majid, "Miniaturization of frequency selective surfaces using 2.5-D Knitted structures: Design and synthesis," IEEE Trans. Antennas Propag., 2017. Google Scholar
19. Saleem, R., M. Bilal, T. Shabbir, and M. F. Shafique, "An FSS-employed UWB antenna system for high-gain portable devices," Microw. Opt. Technol. Lett., 2019. Google Scholar
20. Mondal, K., D. Chanda Sarkar, and P. P. Sarkar, "5 × 5 matrix patch type frequency selective surface based miniaturized enhanced gain broadband microstrip antenna for WLAN/WiMAX/ISM band applications," Progress In Electromagnetics Research C, Vol. 89, 207-219, 2019.
doi:10.2528/PIERC18110803 Google Scholar
21. Kundu, S., A. Chatterjee, S. K. Jana, and S. K. Parui, "A high gain dual notch compact UWB antenna with minimal dispersion for ground penetrating radar application," Radioengineering, 2018. Google Scholar
22. Baena, J. D., et al. "Equivalent-circuit models for split-ring resonators and complementary splitring resonators coupled to planar transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4II, 1451-1460, 2005.
doi:10.1109/TMTT.2005.845211 Google Scholar
23. Ouedraogo, R. O., S. M. Ellison, J. L. Frasch, P. Chahal, and E. J. Rothwell, "Analysis of the Nicolson-Ross-Weir method for characterizing the electromagnetic properties of engineered materials," Progress In Electromagnetics Research, Vol. 157, 31-47, 2016. Google Scholar
24. Numan, A. B. and M. S. Sharawi, "Extraction of material parameters for metamaterials using a full-wave simulator [education column]," IEEE Antennas Propag. Mag., 2013. Google Scholar
25. Samson Daniel, R., R. Pandeeswari, and S. Raghavan, "Offset-fed complementary split ring resonators loaded monopole antenna for multiband operations," AEU --- Int. J. Electron. Commun., 2017. Google Scholar
26. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, 2001.
27. Langley, R. J. and E. A. Parker, "Equivalent circuit model for arrays of square loops," Electron. Lett., 1982. Google Scholar
28. Kushwaha, N. and R. Kumar, "High gain UWB antenna using compact multilayer FSS," IEEE MTT-S International Microwave and RF Conference 2014, IMaRC 2014 --- Collocated with Intemational Symposium on Microwaves, ISM 2014, 2015. Google Scholar
29. Pozar, D. M. and B. Kaufman, "Comparison of three methods for the measurement of printed antenna efficiency," IEEE Trans. Antennas Propag., 1988. Google Scholar
30. Quintero, G., J. F. Zurcher, and A. K. Skrivervik, "System fidelity factor: A new method for comparing UWB antennas," IEEE Trans. Antennas Propag., 2011. Google Scholar