Vol. 89
Latest Volume
All Volumes
PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-01-30
CPW Fed Flexible Graphene Based Thin Dual Band Antenna for Smart Wireless Devices
By
Progress In Electromagnetics Research M, Vol. 89, 73-82, 2020
Abstract
A coplanar waveguide (CPW)-fed flexible dual-band antenna using graphene as conducting material and Kapton polyimide as a substrate is proposed. The antenna shows increased impedance bandwidth due to the use of CPW-feed having the values of 80.29% (1.64-3.84 GHz) and 6.31% (5.52-5.88 GHz), respectively. The antenna has an overall size of 0.38λ × 0.43λ at center frequency of 3.4 GHz. The proposed flexible antenna has gain values of 1.82 dBi and 1.68 dBi with efficiency values more than 86% which makes the antenna commercially viable for smart wireless products having space constraints.
Citation
Ronak Vashi, and Trushit K. Upadhyaya, "CPW Fed Flexible Graphene Based Thin Dual Band Antenna for Smart Wireless Devices," Progress In Electromagnetics Research M, Vol. 89, 73-82, 2020.
doi:10.2528/PIERM19120906
References

1. Geim, A. K. and K. S. Novoselov, "The rise of graphene-nature materials," Nature Materials, Vol. 6, 183-191, 2007.
doi:10.1038/nmat1849

2. Bunch, J. S., "Mechanical and electrical properties of graphene sheets,", Ph.D. dissertation, Cornell University, 2008.

3. Lee, Y. and J. Ahn, "Graphene-based transparent conductive films," World Scientific, Vol. 8, No. 3, 1330001–16, 2013.

4. Moon, J. S. and D. K. Gaskill, "Graphene: Its fundamentals to future applications," IEEE Trans. Microwave Theory Technology, Vol. 59, No. 10, 2702-2708, Oct. 2011.
doi:10.1109/TMTT.2011.2164617

5. Scida, A., S. Haque, E. Treossi, S. Smerzi, S. Ravesi, S. Borini, and V. Palermo, "Application of graphene based flexible antennas in consumer electronic devices," Materials Today, Vol. 21, No. 3, Apr. 2018.
doi:10.1016/j.mattod.2018.01.007

6. Akbari, M., J. Virkki, L. Sydanheimo, et al. "Toward Graphene-based passive UHF RFID textile tags: A reliability study," IEEE Trans. Antennas Propagation, Vol. 16, No. 3, 429-431, 2016.

7. Huang, X., T. Leng, M. Zhu, X. Zhang, J. C. Chen, and K. H. Chang, "Highly flexible and conductive printed graphene for wireless wearable communications applications," Scientific Reports, Vol. 5, 1-8, 2015.

8. Reyes-Vera, E., M. Arias-Correa, A. Giraldo-Muno, D. Catano-Ochoa, and J. Santa-Marin, "Development of an improved response ultra-wideband antenna based on conductive adhesive of carbon composite," Progress In Electromagnetics Research C, Vol. 79, 199-208, 2017.
doi:10.2528/PIERC17091809

9. De Assis, R. and I. Bianchi, "Analysis of microstrip antennas on carbon fiber composite material," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 11, 154-161, Jun. 2012.
doi:10.1590/S2179-10742012000100013

10. Mehdipour, A., T. A. Denidni, A. Sebak, and C. W. Trueman, "Reconfigurable TX/RX antenna systems loaded by anisotropic conductive carbon-fiber composite materials," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 1002-1006, Feb. 2014.
doi:10.1109/TAP.2013.2293784

11. Desai, A., T. Upadhyaya, and R. Patel, "Compact wideband transparent antenna for 5G communication system," Microwave and Optical Technology Letters, 2019.

12. Kantharia, M., A. Desai, T. K. Upadhyaya, R. H. Patel, P. Mankodi, and M. Kantharia, "High gain flexible cpw fed fractal antenna for bluetooth/WLAN/WPAN/WiMAX applications," Progress In Electromagnetics Research, Vol. 79, 87-93, 2018.
doi:10.2528/PIERL18072702

13. Kumar, J., B. Basu, F. A. Talukdar, and A. Nandi, "Graphene-based multimode inspired frequency reconfigurable user terminal antenna for satellite communication," IET Microwave, Antennas and Propagation, Vol. 12, 67-74, 2017.

14. Desai, A., T. Upadhyaya, M. Palandoken, and C. Gocen, "Dual band transparent antenna for wireless MIMO system applications," Microwave and Optical Technology Letters, 2019.

15. Desai, A. and T. Upadhyaya, "Transparent dual band antenna with μ-negative material loading for smart devices," Microwave and Optical Technology Letters, Vol. 60, No. 11, 2805-2811, 2018.
doi:10.1002/mop.31474

16. Kumar, A., V. Sankhla, J. Deegwal, and A. Kumar, "An offset CPW-fed triple-band circularly polarized printed antenna for multiband wireless applications," International Journal of Electron. Commun. (AEU), Vol. 86, 133-141, 2018.
doi:10.1016/j.aeue.2018.02.002

17. Patel, R., A. Desai, and T. Upadhyaya, "A discussion on electrically small antenna property," Microwave and Optical Technology Letters, Vol. 57, No. 10, 2386-2388, 2015.
doi:10.1002/mop.29335

18. Prajapati, P. R., G. G. K. Murthy, A. Patnaik, and M. V. Kartikeyan, "Design and testing of a compact circularly polarized microstrip antenna with fractal defected ground structure for L-band applications," IET Microwaves Antennas and Propagation, Vol. 9, No. 11, 1179-1185, 2015.
doi:10.1049/iet-map.2014.0596

19. Upadhyaya, T., "Design of wide band printed monopole antenna for low rate wireless personal area networks," Microwave and Optical Technology Letters, Vol. 60, No. 11, 2769-2773, 2018.
doi:10.1002/mop.31485

20. Li, Y. J., Z. Y. Lu, and L. S. Yang, "CPW-fed slot antenna for medical wearable applications," IEEE Access, Vol. 7, 42107-42112, 2019.
doi:10.1109/ACCESS.2019.2908199

21. Leng, T., X. Huang, K. H. Chang, J. Chen, M. Abdalla, and Z. Hu, "Graphene nanoflakes printed flexible meandered-line dipole antenna on paper substrate for low-cost RFID and sensing applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, No. 11, 1565-1568, 2016.
doi:10.1109/LAWP.2016.2518746

22. Qiu, Y., N. Behdad, J. Lee, Y. H. Xu, R. Xu, W. Lin, N. Behdad, and Z. Ma, "Compact parylene-ccoated flexible antenna forWLAN and upper-band UWB applications," Electronics Letters, Vol. 50, No. 24, 1782-1784, 2014.
doi:10.1049/el.2014.3647

23. Faisal, F., Y. Amin, Y. Cho, and H. Yoo, "Compact and flexible novel wideband flower-shaped CPW-fed antennas for high data wireless applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 4184-4188, 2019.
doi:10.1109/TAP.2019.2911195

24. Li, X., Y. C. Jiao, and L. Zhang, "Wideband low-profile CPW-fed slot loop antenna using an artificial magnetic conductor," Electron. Lett., Vol. 54, No. 11, 673-674, May 2018.
doi:10.1049/el.2018.0456

25. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Low-profile dual band textile antenna with artificial magnetic conductor plane," IEEE Transactions on Antennas and Propagation, Vol. 2, No. 12, 6487-6490, Dec. 2014.
doi:10.1109/TAP.2014.2359194

26. Lago, H., et al. "Textile antenna integrated with compact AMC and parasitic elements for WLAN/WBAN applications," Applied Physics A, Vol. 122, No. 12, 1059, 2016.
doi:10.1007/s00339-016-0575-9

27. Liu, H., P. Wen, S. Zhu, B. Ren, X. Guan, and H. Yu, "Quad-band CPW-fed monopole antenna based on flexible pentangle-loop radiator," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1373-1376, 2015.

28. Ahmed, S., F. A. Tahir, A. Shamim, and H. M. Cheema, "A compact kapton-based inkjet-printed multiband antenna for flexible wireless devices," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1802-1805, 2015.
doi:10.1109/LAWP.2015.2424681

29. Liu, H., S. Zhu, P.Wen, X. Xiao, W. Che, and X. Guan, "Flexible CPW-fed fishtail-shaped antenna for dual-band applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 770-773, 2014.

30. Hamouda, Z., Wojkiewicz, A. A. Pud, L. Kone, B. Belaabed, S. Bergheul, and T. Lasri, "Dual-band elliptical planar conductive polymer antenna printed on a flexible substrate," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5864-5867, 2015.
doi:10.1109/TAP.2015.2479643

31. Mohandoss, S., S. K. Palaniswamy, and R. R. Thipparaju, "On the bending and time domain analysis of compact wideband flexible monopole antennas," International Journal of Electronics and Communications, Vol. 101, 168-181, 2019.
doi:10.1016/j.aeue.2019.01.015

32., Graphene paper [online] https://www.sigmaaldrich.com/catalog/substance/graphenepaper.

33., Kapton polyimide [online] https://www.kaptontape.com/1 Mil Kapton Tapes.php.