Vol. 90
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-03-20
Scattering and Coupling Reduction of Dipole Antenna Using Gradient Index Metamaterial Based Cloak
By
Progress In Electromagnetics Research M, Vol. 90, 185-193, 2020
Abstract
A gradient index metamaterial (GIM) based conformal cloak is utilized to reduce the overall scattering of a dipole antenna and its blockage effect when being placed in close proximity of a horn antenna. The reduction in scattering is attributed to wave conversion properties of GIM cover, by virtue of which the propagating waves get converted to surface waves and vice versa, thus reducing the scattering signature of the dipole. The GIM cover also has the advantage of larger bandwidth than single metasurface based cloaks (mantle cloak). The proposed GIM based cloak proves to be effective in reducing the mutual interference between dipole and horn antenna without disrupting the performance of individual antennas in their respective frequency band of interest. The Ansys HFSS simulation results are presented to demonstrate the effectiveness of GIM based cover to reduce mutual blockage effect between a low band dipole and an S-band horn antenna.
Citation
Mahesh Singh Bisht, and Kumar Vaibhav Srivastava, "Scattering and Coupling Reduction of Dipole Antenna Using Gradient Index Metamaterial Based Cloak," Progress In Electromagnetics Research M, Vol. 90, 185-193, 2020.
doi:10.2528/PIERM19123003
References

1. Vehmas, J., P. Alitalo, and S. A. Tretyakov, "Experimental demonstration of antenna blockage reduction with a transmission-line cloak," IET Microwaves, Antennas Propagation, Vol. 6, No. 7, 830-834, 2012.
doi:10.1049/iet-map.2011.0509        Google Scholar

2. Alù, A. and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E, Vol. 72, No. 1, 2005.
doi:10.1103/PhysRevE.72.016623        Google Scholar

3. Alù, A., "Mantle cloak: Invisibility induced by a surface," Phys. Rev. B, Vol. 80, No. 24, 2009.
doi:10.1103/PhysRevB.80.245115        Google Scholar

4. Chen, P. Y. and A. Alù, "Mantle cloaking using thin patterned metasurfaces," Phys. Rev. B, Vol. 80, No. 24, 2011.        Google Scholar

5. Padooru, Y. R., A. B. Yakovlev, P. Y. Chen, and A. Alù, "Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays," Journal of Applied Physics. B, Vol. 112, No. 3, 2012.        Google Scholar

6. Alù, A. and N. Engheta, "Cloaking a sensor," Phys. Rev. Lett., Vol. 102, No. 23, 2009.
doi:10.1103/PhysRevLett.102.233901        Google Scholar

7. Monti, A., J. Soric, A. Alù, F. Bilotti, A. Toscano, and L. Vegni, "Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1414-1417, 2012.
doi:10.1109/LAWP.2012.2229102        Google Scholar

8. Soric, J. C., R. Fleury, A. Monti, A. Toscano, F. Bilotti, and A. Alù, "Controlling scattering and absorption with metamaterial covers," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 8, 4220-4229, 2014.
doi:10.1109/TAP.2014.2322891        Google Scholar

9. Soric, J. C., A. Monti, A. Toscano, F. Bilotti, and A. Alù, "Dual-polarized reduction of dipole antenna blockage using mantle cloaks," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 4827-4834, 2015.
doi:10.1109/TAP.2015.2476468        Google Scholar

10. Bernety, H. M. and A. B. Yakovlev, "Cloaking of single and multiple elliptical cylinders and strips with confocal elliptical nanostructured graphene metasurface," Journal of Physics: Condensed Matter, Vol. 27, No. 18, 2015.
doi:10.1088/0953-8984/27/18/185304        Google Scholar

11. Bernety, H. M. and A. B. Yakovlev, "Decoupling antennas in printed technology using elliptical metasurface cloaks," Journal of Applied Physics, Vol. 119, No. 1, 2016.
doi:10.1063/1.4939610        Google Scholar

12. Monti, A., J. C. Soric, B. Mirko, R. Davide, V. Stefano, F. Trotta, A. Alù, A. Toscano, and F. Bilotti, "Mantle cloaking for co-site radio-frequency antennas," Applied Physics Letters, Vol. 108, No. 11, 2016.
doi:10.1063/1.4944042        Google Scholar

13. Moreno, G., H. Bernety, and A. B. Yakovlev, "Wideband elliptical metasurface cloaks in antenna technology," 2017 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, 69-70, 2017.
doi:10.1109/APUSNCURSINRSM.2017.8072077        Google Scholar

14. Moreno, G., A. B. Yakovlev, H. M. Bernety, D. H. Werner, H. Xin, A. Monti, F. Bilotti, and A. Alù, "Wideband elliptical metasurface cloaks in printed antenna technology," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 7, 3512-3525, 2018.
doi:10.1109/TAP.2018.2829809        Google Scholar

15. Monti, A., J. Soric, A. Alù, T. Alessandro, and B. Filiberto, "Design of cloaked Yagi-Uda antennas," EPJ Applied Metamaterials, Vol. 3, 2016.        Google Scholar

16. Bisht, M. S. and K. V. Srivastava, "Design and analysis of gradient index metamaterial-based cloak with wide bandwidth and physically realizable material parameters," Applied Physics A, Vol. 124, No. 4, 2018.
doi:10.1007/s00339-018-1705-3        Google Scholar

17. Shulin, S., H. Qiong, X. Shiyi, X. Qin, L. Xin, and Z. Lei, "Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves," Nature Materials, Vol. 11, 2012.        Google Scholar

18. Xu, Y., C. Gu, B. Hou, Y. Lai, J. Li, and H. Chen, "Broadband asymmetric waveguiding of light without polarization limitations," Nature Communications, Vol. 4, 2013.        Google Scholar

19. Gu, C., Y. Xu, S. Li, W. Lu, J. Li, H. Chen, and B. Hou, "A broadband polarization-insensitive cloak based on mode conversion," Scientific Reports, Vol. 5, 2015.        Google Scholar

20. L3 Narda-ATM "Waveguide horn antenna-standard gain and wide band,", https://www.atmmicrowave.com/waveguide/horn-antenna-standard-gain-wide-band.        Google Scholar

21. Saini, L., Y. Janu, M. K. Patra, R. K. Jani, G. K. Gupta, A. Dixit, and S. R. Vadera, "Dual band resonance in tetragonal BaTiO3/NBR composites for microwave absorption applications," J. Am. Ceram. Soc., Vol. 99, No. 9, 3002-3007, 2016.
doi:10.1111/jace.14284        Google Scholar

22. Bele, A., M. Cazacu, G. Stiubianu, and S. Vlad, "Silicone-barium titanate composites with increased electromechanical sensitivity. The effects of the filler morphology," RSC Adv., Vol. 4, No. 102, 58522-58529, 2014.
doi:10.1039/C4RA09903F        Google Scholar

23. Murugan, M., V. K. Kokate, M. S. Bapat, and A. M. Sapkal, "Synthesis of nanosized barium titanate/epoxy resin composites and measurement of microwave absorption," Bull. Mater. Sci., Vol. 33, No. 6, 657-662, Dec. 2010.
doi:10.1007/s12034-011-0143-z        Google Scholar

24. Babar, A. A., V. A. Bhagavati, L. Ukkonen, A. Z. Elsherbeni, P. Kallio, and L. Sydanheimo, "Performance of high-permittivity ceramic-polymer composite as a substrate for UHF RFID tag antennas," Int. J. Antennas Propag., 2012.        Google Scholar

25. Vural, M., B. Crowgey, L. C. Kempel, and P. Kofinas, "Nanostructured flexible magneto-dielectrics for radio frequency applications," J. Mater. Chem. C, Vol. 2, No. 4, 756-763, 2014.
doi:10.1039/C3TC32113D        Google Scholar

26. Han, K., M. Swaminathan, R. Pulugurtha, H. Sharma, R. Tummala, S. Yang, and V. Nair, "Magneto-dielectric nanocomposite for antenna miniaturization and SAR reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 72-75, 2016.
doi:10.1109/LAWP.2015.2430284        Google Scholar

27. Morales, C. A., "Magneto-dielectric polymer nanocomposite engineered substrate for RF and microwave antennas,", Ph.D. Dissertation, University of South Florida, 2011.        Google Scholar

28. Yang, T. I., R. N. C. Brown, L. C. Kempel, and P. Kofinas, "Controlled synthesis of core-shell iron-silica nanoparticles and their magneto-dielectric properties in polymer composites," Nanotechnology, Vol. 22, No. 10, 2011.
doi:10.1088/0957-4484/22/10/105601        Google Scholar