1. Lin, J. C., "Non-invasive microwave measurement of respiration," Proc. IEEE, Vol. 3, 1530, 1975.
doi:10.1109/PROC.1975.9992 Google Scholar
2. Pedersen, P. C., C. C. Johnson, C. H. Durney, and D. G. Bragg, "An investigation of the use of microwave radiation for pulmonary diagnostics," IEEE Trans. Biomed. Eng., Vol. 23, 410, 1976.
doi:10.1109/TBME.1976.324653 Google Scholar
3. Griffin, D. W., "MW interferometers for biological studies," Microwave J., Vol. 21, 69, 1987. Google Scholar
4. Lin, J. C., J. Kiernicki, M. Kiernicki, and P. B. Wollschlaeger, "Microwave apexcardiography," IEEE Trans. Microw. Theory Tech., Vol. 27, 618, 1979.
doi:10.1109/TMTT.1979.1129682 Google Scholar
5. Chen, K.-M., D. Misra, H. Wang, H.-R. Chuang, and E. Postow, "An X-band microwave life-detection system," IEEE Trans. Biomed. Eng., Vol. 33, 697, 1986.
doi:10.1109/TBME.1986.325760 Google Scholar
6. Mase, A., Y. Kogi, D. Kuwahara, Y. Nagayama, N. Ito, T. Maruyama, H. Ikezi, X. Wang, M. Inutake, T. Tokuzawa, J. Kohagura, M. Yoshikawa, S. Shinohara, A. Suzuki, F. Sakai, M. Yamashika, B. J. Tobias, C. Muscatello, X. Ren, M. Chen, C. W. Domier, N. C. Luhmann, and Jr., "Development and application of radar reflectometer using micro to infrared waves," Advances in Physics: X, Vol. 3, 633, 2018.
doi:10.1080/23746149.2018.1472529 Google Scholar
7. Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology "Heart rate variability, standards of measurement, physiological interpretation, and clinical use," Circulation, Vol. 93, 1043, 1996.
doi:10.1161/01.CIR.93.5.1043 Google Scholar
8. Wiklund, U., M. Akay, and U. Niklasson, "Short-term analysis of heart-rate variability of adapted wavelet transforms," IEEE Eng. Med. Biol. Mag., Vol. 16, 113, 1997.
doi:10.1109/51.620502 Google Scholar
9. Duvnjaek, L., S. Vuckovic, N. Car, and Z. Metelko, "Relationship between autonomic function, 24-h blood pressure, and albuminuria in normotensive, normoalbuminuric patients with Type 1 diabetes," J. Diabetes Complications, Vol. 15, 314, 2001.
doi:10.1016/S1056-8727(01)00164-7 Google Scholar
10. Takada, M., T. Ebara, and Y. Sakaki, "The acceleration plethysmography system as a new physiological technology for evaluating autonomic modulations," Health Eval. Promot., Vol. 35, 373, 2008.
doi:10.7143/jhep.35.373 Google Scholar
11. Suzuki, S., T. Matsui, H. Imuta, M. Uenoyama, H. Yura, M. Ishihara, and M. Kawakami, "A novel autonomic activation measurement method for stress monitoring: non-contact measurement of heart rate variability using a compact microwave radar," Med. Biol. Eng. Comput., Vol. 46, 709, 2008.
doi:10.1007/s11517-007-0298-3 Google Scholar
12. Maruyama, T., S. Yasuda, and A. Mase, "Heart rate variability analysis of human volunteers under noncontact, noninvasive and clothed condition using microwave reflectometry: feasibility study," J. Electrocardiology, Vol. 35, 133, 2015 (in Japanese).
doi:10.5105/jse.35.133 Google Scholar
13. Ministry of Internal Affairs and Communications (MIC), The Radio Use Web Site, https://www.tele.soumu.go.jp/j/adm/system/ml/small/index.htm. Google Scholar
14. Nagae, D. and A. Mase, "Measurement of heart rate variability and stress evaluation by using microwave reflectometric vital signal sensing," Rev. Sci. Instrum., Vol. 81, 094301/1-10, 2010.
doi:10.1063/1.3478017 Google Scholar
15. Mase, A. and D. Nagae, "System for measuring a peak frequency of a signal for analyzing condition of a subject,", US Patent, 9186079, 2015. Google Scholar