1. Dai, H. S., G. Sheng, and X. Jiang, "Dissolved gas analysis of insulating oil for power transformer fault diagnosis with deep belief network," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 24, No. 5, 2828-2835, Oct. 2017, doi: 10.1109/TDEI.2017.006727.
doi:10.1109/TDEI.2017.006727 Google Scholar
2. Kaur, A., Y. S. Brar, and G. Leena, "Fault detection in power transformers using random neural networks," International Journal of Electrical and Computer Engineering (IJECE), Vol. 9, No. 1, 78-84, February 2019.
doi:10.11591/ijece.v9i1.pp78-84 Google Scholar
3. Mehdipourpicha, H., R. Bo, H. Chen, Md M. Rana, J. Huang, and F. Hu, "Transformer fault diagnosis using deep neural network," 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), 4241-4245, 2019, 10.1109/ISGT-Asia.2019.8881052.
doi:10.1109/ISGT-Asia.2019.8881052 Google Scholar
4. Cabanas, M. F., F. Pedrayes González, M. G. Melero, C. H. Rojas García, G. A. Orcajo, J. M. Cano Rodríguez, and J. G. Norniella, "Insulation fault diagnosis in high voltage power transformers by means of leakage flux analysis," Progress In Electromagnetics Research, Vol. 114, 211-234, 2011.
doi:10.2528/PIER11010302 Google Scholar
5. Sun, Z. and Q. Cui, "The application of multiclass support vector machine in power transformer fault diagnosis," Journal of Electronic & Information Technology, No. 10, 25-28, 2019. Google Scholar
6. Mou, S. and T. Xu, "Fault diagnosis method of transformer based on adaptive deep learning model," Journal of Software, Vol. 12, No. 10, 14-18, 2018. Google Scholar
7. Zhang, X. and H. Li, "Research on transformer fault diagnosis method and calculation model by using fuzzy data fusion in multi-sensor detection system," Optik, Vol. 176, 716-723, January 2019. Google Scholar
8. Sun, Z. and L. Xue, "Marginal fisher feature extraction algorithm based on deep learning," Journal of Electronics & Information Technology, Vol. 35, No. 4, 805-811, 2013.
doi:10.3724/SP.J.1146.2012.00949 Google Scholar
9. Jiang, Y. and L. Huang, "Transformer internal fault diagnosis based on DGA and deep belief network," Engineering Journal of Wuhan University, Vol. 50, No. 5, 749-752, 2017. Google Scholar
10. Wang, L. and Y. Zhu, "Parallel phase resolved partial discharge analysis for pattern recognition on massive PD data," Proceeding of the CSEE, Vol. 36, No. 5, 1236-1244, 2016. Google Scholar
11. Zheng, Y. and Y. Zhu, "VPMCD method based on support vector regression and its application in partial discharge pattern recognition," Journal of North China Electric Power University, 2018. Google Scholar
12. Wang, X. and Y. Zhu, "On identification method of power capacitor dielectric loss angle based on deep learning," Transaction of China Electrotechnial Society, Vol. 32, No. 15, 145-150, 2017. Google Scholar
13. Shi, X. and Y. Zhu, "Application of deep learning neural network in fault diagnosis of power transformer," Electric Power Construction, Vol. 36, No. 12, 116-121, 2015. Google Scholar
14. Wang, L. and Y. Xie, "A fault diagnosis method for asynchronous motor using deep learning," Journal of Xi'an Jiaotong University, Vol. 51, No. 10, 128-134, 2017. Google Scholar
15. Geng, L. and X. Liang, "Real-time driver fatigue detection based on morphology infrared features and deep learning," Infrared and Laser Engineering, Vol. 47, No. 2, 2-8, 2018. Google Scholar
16. Zhao, Q. and Z. Li, "Deep multi-task learning for hierarchical classification," Journal of Computer-aided Design & Computer Graphics, Vol. 30, No. 5, 886-891, 2018. Google Scholar
17. Che, C. and H. Wang, "Fault fusion diagnosis of aero-engine based on deep learning," Journal of Beijing University of Aeronautics and Astronauties, Vol. 44, No. 3, 621-627, 2018. Google Scholar