1. Wu, Q., C. P. Scarborough, M. D. Gregory, D. H. Werner, R. K. Shaw, and E. Lier, "Broadband metamaterial-enabled hybrid-mode horn antennas," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-4, Toronto, ON, Canada, Jul. 2010. Google Scholar
2. Scarborough, C. P., Q. Wu, M. D. Gregory, D. H. Werner, R. K. Shaw, and E. Lier, "Broadband metamaterial soft-surface horn antennas," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-4, Toronto, ON, Canada, Jul. 2010. Google Scholar
3. Shaw, R. K., E. Lier, and C.-C. Hsu, "Profiled hard metamaterial horns for multibeam reflectors," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-4, Toronto, ON, Canada, Jul. 2010. Google Scholar
4. Lier, E., R. K. Shaw, D. H. Werner, Q. Wu, C. P. Scarborough, and M. D. Gregory, "Statuts on meta-horn development - Theory and experiments," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-4, Toronto, ON, Canada, Jul. 2010. Google Scholar
5. Kildal, P.-S. and E. Lier, "Hard horns improve cluster feeds of satellite antennas," Electron. Lett., Vol. 24, No. 8, 491-492, Apr. 1988. Google Scholar
6. Thomas, B., "A method of synthesizing radiation patterns with axial symmetry," IEEE Trans. Antennas Propag., Vol. 14, No. 5, 654-656, Sep. 1966. Google Scholar
7. Lier, E., "Review of soft and hard horn antennas, including metamaterial-based hybrid-mode horns," IEEE Trans. Antennas Propag. Mag., Vol. 52, No. 2, 31-39, Apr. 2010. Google Scholar
8. Pollock, J. G. and A. K. Iyer, "Below-cutoff propagation in metamaterial-lined circular waveguides," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 9, 3169-3178, Sep. 2013. Google Scholar
9. Pollock, J. G. and A. K. Iyer, "Radiation characteristics of miniaturized metamaterial-lined waveguide probe antennas," Proc. 2015 IEEE Int. Symp. on Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, 1734-1735, Vancouver, BC, Canada, Jul. 2015. Google Scholar
10. Pollock, J. G. and A. K. Iyer, "Miniaturized circular-waveguide probe antennas using metamaterial liners," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 428-433, Jan. 2015. Google Scholar
11. Pollock, J. G. and A. K. Iyer, "Experimental verification of below-cutoff propagation in miniaturized circular waveguides using anisotropic ENNZ metamaterial liners," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 4, 1297-1305, Apr. 2016. Google Scholar
12. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Single-layer circular polarizer using metamaterial and its application in antenna," Microw. Opt. Technol. Lett., Vol. 54, No. 7, 1770-1774, 2012. Google Scholar
13. Huang, Y., L. Yang, J. Li, Y. Wang, and G. Wen, "Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna," Appl. Phys. Lett., Vol. 109, No. 5, 054101, 2016. Google Scholar
14. Zhu, H. L., S. W. Cheung, X. H. Liu, and T. I. Yuk, "Design of polarization reconfigurable antenna using métasurfaces," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 2891-2898, 2014. Google Scholar
15. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, Nov. 2006. Google Scholar
16. Jia, Y., Y. Liu, Y. J. Guo, K. Li, and S.-X. Gong, "Broadband polarization rotation reflective surfaces and their applications to RCS reduction," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 179-188, 2015. Google Scholar
17. Yang, J. J., Y. Z. Cheng, C. C. Ge, and R. Z. Gong, "Broadband polarization conversion metasurface based on metal cut-wire structure for radar cross section reduction," Materials, Vol. 11, No. 4, 626, 2018. Google Scholar
18. Zheng, Q., C. Guo, H. Li, and J. Ding, "Broadband radar cross-section reduction using polarization conversion métasurfaces," Int. J. Microw. Wirel. Technol., Vol. 10, No. 2, 197-206, 2018. Google Scholar
19. Liu, Y., K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, "Wideband RCS reduction of a slot array antenna using polarization conversion métasurfaces," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 326-331, 2015. Google Scholar
20. Zhang, L. and T. Dong, "Low RCS and high-gain CP microstrip antenna using SA-MS," Electron. Lett., Vol. 53, No. 6, 375-376, 2017. Google Scholar
21. Li, K., Y. Liu, Y. Jia, and Y. J. Guo, "A circularly polarized high-gain antenna with low RCS over a wideband using chessboard polarization conversion métasurfaces," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 4288-4292, 2017. Google Scholar
22. Long, M., W. Jiang, and S. Gong, "Wideband RCS reduction using polarization conversion metasurface and partially reflecting surface," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2534-2537, 2017. Google Scholar
23. Sharma, A., D. Gangwar, B. Kumar Kanaujia, S. Dwari, and S. Kumar, "Design of a wideband polarisation conversion metasurface and its application for RCS reduction and gain enhancement of a circularly polarised antenna," IET Microw. Antennas Propag., Vol. 13, No. 9, 1427-1437, Jul. 2019, doi: 10.1049/iet-map.2018.6002. Google Scholar
24. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, Apr. 2001. Google Scholar
25. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneoustly negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, May 2000. Google Scholar
26. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968. Google Scholar
27. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., Vol. 64, No. 5, Art. no. 056625, Dec. 2001. Google Scholar
28. Wu, Q., M. D. Gregory, D. H. Werner, P. L. Werner, and E. Lier, "Nature-inspired design of soft, hard and hybrid metasurfaces," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-4, Toronto, ON, Canada, Jul. 2010. Google Scholar
29. Byrne, B., N. Raveu, N. Capet, G. Le Fur, and L. Duchesne, "Modal analysis of rectangular waveguides with 2D metamaterials," Progress In Electromagnetics Research C, Vol. 70, 165-173, 2016. Google Scholar
30. Byrne, B., "Etude et conception de guides d'onde et d'antennes cornets à métamatériaux,", Ph.D. dissertation, These de doctorat d'état, Univ. Toulouse, Toulouse, France, 2016. Google Scholar
31. Kuhler, L., G. Le Fur, L. Duchesne, and N. Raveu, "The propagation characteristics of 2-D metamaterial waveguides using the modal expansion theory," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 10, 4319-4326, Oct. 2018. Google Scholar
32. Kuhler, L., G. Le Fur, L. Duchesne, and N. Raveu, "Modal analysis of cylindrical waveguides with 2-D metamaterial wall," Proc. META 2018 - The 9th Int. Conf.Metamaterials, Photonic Crystals Plasmonics, Marseille, France, 2018. Google Scholar
33. Kuhler, L., N. Raveu, G. Le Fur, and L. Duchesne, "Théorie modale élargie appliquée aux guides d'onde cylindriques à métamatériaux," Proc. XXIème Journées Nationales Microondes, Caen, France, 2019. Google Scholar
34. Warecka, M., R. Lech, and P. Kowalczyk, "Efficient finite element analysis of axially symmetrical waveguides and waveguide discontinuities," IEEE Trans. Microw. Theory Tech., Vol. 67, No. 11, 4291-4297, 2019. Google Scholar
35. Byrne, B., N. Raveu, N. Capet, G. Le Fur, and L. Duchesne, "Reduction of rectangular waveguide cross-section with metamaterials: A new approach," Proc. 9th Int. Congr. Adv. Electromagn. Mater. Microw. Opt. (METAMATERIALS), 40-42, Oxford, U.K., Sep. 7-12, 2015. Google Scholar
36. Byrne, B., N. Capet, and N. Raveu, "Dispersion properties of corrugated waveguides based on the modal theory," Proc. 8th Eur. Conf. on Antennas Propag., 1-3, The Hague, The Netherland, Apr. 6-11, 2014. Google Scholar
37. Raveu, N., B. Byrne, L. Claudepierre, and N. Capet, "Modal theory for waveguides with anisotropic surface impedance boundaries," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 4, 1153-1162, Apr. 2016. Google Scholar
38. Verma, P. K., R. Kumar, and M. Singh, "Design of a shaped omni directional circular waveguide antenna," Applied Electromagn. Conf. (AEMC), Kolkata, India, Dec. 14-16, 2009. Google Scholar
39. Tang, J., L. Fang, and H. Cheng, "A low sidelobe and high gain omni-directional COCO antenna array," Proc. Asia-Pacific Conf. Antennas Propag. (APCAP), Harbin, China, Jul. 26-29, 2014. Google Scholar
40. Güngör, I. and A. Ünal, "Design of a verticaly polarized omni-directional antenna at Ka-band," IEEE Int. Symp. Antennas Propag. (APSURSI), Fajardo, Puerto Rico, Jun. 26-Jul. 1, 2016. Google Scholar
41. Granet, G. J. C., "Design of corrugated horns: A primer," IEEE Trans. Antennas Propag., Vol. 47, No. 2, 76-84, Jul. 2005. Google Scholar
42. Clarricoats, P. J. B., "Analysis of spherical hybrid modes in a corrugated conical horn," Electron. Lett., Vol. 5, No. 9, 189-190, May 1969. Google Scholar
43. Lier, E., "Hybrid-mode horn antenna with design-specific aperture distribution and gain," Proc. 2015 IEEE Int. Symp. on Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, Columbus, OH, USA, Jun. 22-27, 2003. Google Scholar
44. Clarricoats, P. J. B. and A. David Olver, Corrugated Horns for Microwave Antennas, Peregrinus, 1984.
45. Dular, P. and C. Geuzaine, "GetDP reference manual: The documentation for GetDP 3.0 - A general environment for the treatment of discrte problems,", Liège, Belgium, 2018. Google Scholar
46. Thomas, B. M. A. and H. C. Minnett, "Modes of propagation in cylindrical waveguides with anisotropic walls," Proc. Inst. Electrical Engineers, Vol. 125, No. 10, 929-932, Oct. 1978. Google Scholar
47. Geuzaine, C. and J.-F. Remacle, "Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities," Int. J. for Numer. Methods Eng., Vol. 79, No. 11, 1309-1331, 2009. Google Scholar