1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, 2005.
2. Reed, J. A. and D. M. Byrne, "Frequency-selective surfaces with multiple apertures within a periodic cell," JOSA A, Vol. 15, 660-668, Mar. 1998.
doi:10.1364/JOSAA.15.000660 Google Scholar
3. Sievenpiper, D. F., "High-impedance electromagnetic surfaces,", 1998.
doi:10.1364/JOSAA.15.000660 Google Scholar
4. Ott, R. H., R. G. Kouyoumjian, and L. Peters, "Scattering by a two-dimensional periodic array of narrow plates," Radio Science, Vol. 2, 1347-1359, Nov. 1967.
doi:10.1002/rds19672111347 Google Scholar
5. Ebrahimi, A., S. Nirantar, W. Withayachumnankul, M. Bhaskaran, S. Sriram, S. F. Al-Sarawi, and D. Abbott, "Second-order terahertz bandpass frequency selective surface with miniaturized elements," IEEE Transactions on Terahertz Science and Technology, Vol. 5, 761-769, Jul. 2015.
doi:10.1109/TTHZ.2015.2452813 Google Scholar
6. Cong, L., X. Cao, and T. Song, "Ultra-wideband RCS reduction and gain enhancement of aperture-coupled antenna based on hybrid-FSS," Radioengineering, Vol. 26, 1041, Dec. 2017.
doi:10.13164/re.2017.1041 Google Scholar
7. Zhang, W., J. Y. Li, and J. Xie, "A broadband linear-to-circular transmission polarizer based on right-angled frequency selective surfaces," International Journal of Antennas and Propagation, 2017. Google Scholar
8. Chakravarty, S., R. Mittra, and N. R. Williams, "On the application of the microgenetic algorithm to the design of broad-band microwave absorbers comprising frequency-selective surfaces embedded in multilayered dielectric media," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, 1050-1059, Jun. 2001.
doi:10.1109/22.925490 Google Scholar
9. Parker, E. A., S. Massey, M. Shelley, and R. Pearson, "Application of FSS structures to selectively control the propagation of signals into and out of buildings Annex 5: Survey of active FSS," ERA Technology, Tech. Rep. Ofcom AY4464A Project, 2004. Google Scholar
10. Jain, A., R. P. Yadav, and S. Kumar, "Design and development of high power variable dual-directional radio frequency coupler," IET Microwaves, Antennas & Propagation, Vol. 13, 2544-2550, Aug. 2019.
doi:10.1049/iet-map.2018.5855 Google Scholar
11. Jain, A., R. P. Yadav, and S. Kumar, "Design and development of resonant loop antenna for mock-up ion cyclotron resonance frequency system of tokamak," IET Microwaves, Antennas & Propagation, Vol. 13, 976-981, 2019.
doi:10.1049/iet-map.2018.5797 Google Scholar
12. Jain, A., R. P. Yadav, and S. V. Kulkarni, "Design and development of 2 kW, 3 dB hybrid coupler for the prototype ion cyclotron resonance frequency (ICRF) system," International Journal of Microwave and Wireless Technologies, Vol. 11, 1-6, Feb. 2019.
doi:10.1017/S175907871800137X Google Scholar
13. Abadi, S. M. A. M. H., M. Li, and N. Behdad, "Harmonic-suppressed miniaturized-element frequency selective surfaces with higher order bandpass responses," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2562-2571, 2014.
doi:10.1109/TAP.2014.2303822 Google Scholar
14. Chieh, J. C. S., B. Dick, S. Loui, and J. D. Rockway, "Development of a Ku-band corrugated conical horn using 3-D print technology," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 201-204, Jan. 2014.
doi:10.1109/LAWP.2014.2301169 Google Scholar
15. Kronberger, R. and P. Soboll, "3D-printed frequency selective surfaces for microwave absorbers," IEEE International Symposium on Antennas and Propagation (ISAP), 178-179, Oct. 2016. Google Scholar
16. O’Neal, M. E., D. A. Landis, E. Rothwell, L. Kempel, and D. Reinhard, "Tracking insects with harmonic radar: A case study," American Entomologist, Vol. 50, 212-218, Oct. 2004. Google Scholar
17. Moore, J. D., "Acrylonitrile-butadiene-styrene (ABS) --- A review," Composites, Vol. 4, 118-130, May 1973.
doi:10.1016/0010-4361(73)90585-5 Google Scholar
18. Liu, N., X. Sheng, C. Zhang, and D. Guo, "Design of frequency selective surface structure with high angular stability for radome application," IEEE Antennas and Wireless Propagation Letters, Vol. 17, 138-141, Nov. 2017. Google Scholar
19. Samaddar, P., S. De, S. Sarkar, S. Biswas, D. C. Sarkar, and P. P. Sarkar, "Study on dual wide band frequency selective surface for different incident angles," Int. J. Soft Comput. Eng., Vol. 2, 340-342, Jan. 2013. Google Scholar
20. Balanis, C. A., "Antenna Theory: Analysis and Design," John Wiley & Sons, 2016. Google Scholar
21. Huang, F. C., C. N. Chiu, T. L. Wu, and Y. P. Chiou, "A circular-ring miniaturized-element metasurface with many good features for frequency selective shielding applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, 365-374, Jan. 2015.
doi:10.1109/TEMC.2015.2389855 Google Scholar
22. Behdad, N., M. Al-Joumayly, and M. Salehi, "A low-profile third-order bandpass frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 57, 460-466, Mar. 2009.
doi:10.1109/TAP.2008.2011202 Google Scholar
23. Bharti, G., K. R. Jha, G. Singh, G., and R. Jyoti, "Angular stable, dual-polarized and multiband modified circular ring frequency selective surface," Frequenz, Vol. 69, 199-206, May 2015. Google Scholar
24. Bharti, G., K. R. Jha, G. Singh, and R. Jyoti, "Design of angular and polarization stable modified circular ring frequency selective surface for satellite communication system," International Journal of Microwave and Wireless Technologies, Vol. 8, 899-907, Sep. 2016.
doi:10.1017/S1759078715000331 Google Scholar
25. Ghosh, S. and S. Lim, "A miniaturized bandpass frequency selective surface exploiting 3D printing technique," IEEE Antennas and Wireless Propagation Letters, May 2019. Google Scholar