Vol. 90
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-03-11
Optimization of Gimbal Parameters to Improve the Boresight Error Performance of Airborne Radomes
By
Progress In Electromagnetics Research M, Vol. 90, 127-135, 2020
Abstract
This paper presents the effect of gimbal geometry parameters on the electromagnetic performance of streamlined radome for airborne applications. The work demonstrates that the gimbal position significantly affects the boresight error performance. The optimization of gimbal position is performed, and the resultant boresight error is limited to 1.5 mrad while keeping the insertion loss below 0.25 dB over the entire antenna scan angle range. The analysis of the antenna-radome system is carried out using the 3D ray tracing method. This work shows that the gimbal geometry parameters provide additional degree of freedom for improving radome performance parameters and can be applied to both the gimbal mounted and electronically scanning antennas enclosed by streamlined radomes.
Citation
Yash Sanjay Zanwar, Aparna Parameswaran, and Hrishikesh Sonalikar, "Optimization of Gimbal Parameters to Improve the Boresight Error Performance of Airborne Radomes," Progress In Electromagnetics Research M, Vol. 90, 127-135, 2020.
doi:10.2528/PIERM20012104
References

1. Kozakoff, D. J., Analysis of Radome-Enclosed Antennas, 2nd Ed., Artech House, 2010.

2. Shavit, R., Radome Electromagnetic Theory and Design, Wiley Online Library, 2018.
doi:10.1002/9781119410850

3. Cady, W. M., M. B. Karelitz, and L. A. Turner, Radar Scanners and Radomes, Vol. 26, McGraw-Hill Book Company, 1948.

4. Crone, G. A. E., A. W. Rudge, and G. N. Taylor, "Design and performance of airborne radomes: A review," IEE Proc., Vol. 128, 451-464, 1981.

5. Nair, R. U. and R. M. Jha, "Electromagnetic performance analysis of a novel monolithic radome for airborne applications," IEEE Transactions on Antennas and Propagation, Vol. 57, 3664-3668, 2009.
doi:10.1109/TAP.2009.2026595

6. Nair, R. U., S. Shashidhara, and R. Jha, "Novel inhomogeneous planar layer radome design for airborne applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 854-856, 2012.
doi:10.1109/LAWP.2012.2210531

7. Chen, F., Q. Shen, and L. Zhang, "Electromagnetic optimal design and preparation of broadband ceramic radome material with graded porous structure," Progress In Electromagnetics Research, Vol. 105, 445-461, 2010.
doi:10.2528/PIER10012005

8. Nair, R., M. Suprava, and R. Jha, "Graded dielectric inhomogeneous streamlined radome for airborne applications," Electronics Letters, Vol. 51, No. 11, 862-863, 2015.
doi:10.1049/el.2015.0462

9. Nair, R. U., S. Vandhana, and R. M. Jha, "Temperature-dependant electromagnetic performance predictions of a hypersonic streamlined radome," Progress In Electromagnetics Research, Vol. 154, 65-78, 2015.
doi:10.2528/PIER15052602

10. Zhou, L., Y. Pei, and D. Fang, "Dual-band A-sandwich radome design for airborne applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 218-221, 2015.

11. Xu, W., "Multiobjective particle swarm optimization of boresight error and transmission loss for airborne radomes," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 11, 5880-5885, 2014.
doi:10.1109/TAP.2014.2352361

12. Xu, W., B. Duan, P. Li, and Y. Qiu, "A new efficient thickness profile design method for streamlined airborne radomes," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 6190-6195, 2017.
doi:10.1109/TAP.2017.2754460

13. Xu, W., B. Duan, P. Li, Y. Zong, and Y. Qiu, "Novel compensation method for electromagnetic performance of dielectric radome based on reflector shaping," IET Microwaves, Antennas & Propagation, Vol. 9, No. 2, 125-132, 2014.
doi:10.1049/iet-map.2013.0712

14. Xu, W., B. Duan, P. Li, and Y. Qiu, "Study on the electromagnetic performance of inhomogeneous radomes for airborne applications. Part I: Characteristics of phase distortion and boresight error," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 3162-3174, 2017.
doi:10.1109/TAP.2017.2694489

15. Xu, W., B. Duan, P. Li, and Y. Qiu, "Study on the electromagnetic performance of inhomogeneous radomes for airborne applications. Part II: The overall comparison with variable thickness radomes," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 3175-3183, 2017.
doi:10.1109/TAP.2017.2694463

16. Xu, W., P. Li, and Y. Qiu, "Electromagnetic performance analysis of inhomogeneous airborne radomes for circular polarization applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 1, 74-78, 2018.
doi:10.1109/LAWP.2018.2880946

17. Xu, W., P. Li, and Y. Qiu, "Efficient variable thickness radome design with insertion phase delay correction," International Journal of Antennas and Propagation, No. 9150361, 1-12, 2019.

18. Yazeen, P. M., C. Vinisha, S. Vandana, M. Suprava, and R. U. Nair, "Electromagnetic performance analysis of graded dielectric inhomogeneous streamlined airborne radome," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 5, 2718-2723, 2017.
doi:10.1109/TAP.2017.2669718