Vol. 101
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-04-22
High-Gain and Circularly Polarized Fractal Antenna Array for Dedicated Short Range Communication Systems
By
Progress In Electromagnetics Research C, Vol. 101, 133-146, 2020
Abstract
In this paper, a low-profile fractal antenna and its array for DSRC-band applications have been proposed. The proposed single element is a newly designed fractal antenna which is right-handed circularly polarized (RHCP) and derived from the Koch-snowflake 1st-iteration. Moreover, a diagonal slot defect in the ground plane has been implemented for resonating the structure at the desired frequency and, to get a low cross-polarization over the operating frequency. The compact feed-network of the array is designed using s Wilkinson power-divider. A single element and a 4 × 1 antenna array are designed, prototyped and verified. The antenna array is designed by a single-layer microstrip structure with a compact size of 151.70 × 43.50 mm2. According to the experimental results, the single element and the antenna array have S11 of -15.27 dB and -13.95 dB, and RHCP gain of 6.14 dBic and 11.98 dBic, respectively. Moreover, the computed radiation efficiencies of single element and array are 78.17% and 71.50%, respectively, while CP bandwidths of single element and array are 49.00 MHz and 58.00 MHz, respectively. The performance of the proposed RHCP antenna is suitable for the DSRC-band application.
Citation
Deven G. Patanvariya, Anirban Chatterjee, and Kalyan Sundar Kola, "High-Gain and Circularly Polarized Fractal Antenna Array for Dedicated Short Range Communication Systems," Progress In Electromagnetics Research C, Vol. 101, 133-146, 2020.
doi:10.2528/PIERC20020706
References

1. Jiang, D., V. Taliwal, A. Meier, W. Holfelder, and R. Herrtwich, "Design of 5.9GHz DSRC-based vehicular safety communication," IEEE Wireless Communications, Vol. 13, No. 5, 36-43, 2006.        Google Scholar

2. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.

3. Pozar, D. M., "Microstrip antennas," Proceedings of the IEEE, Vol. 80, 79-91, 1992.        Google Scholar

4. Carver, K. and J. Mink, "Microstrip antenna technology," IEEE Transactions on Antennas and Propagation, Vol. 29, No. 1, 2-24, 1981.        Google Scholar

5. Guha, D., Y. M. Antar, and Eds., Microstrip and Printed Antennas: New Trends, Techniques and Applications, John Wiley & Sons, 2011.

6. Mandelbrot, B. B., The Fractal Geometry of Nature, WH freeman, 1983.

7. Anguera, J., C. Puente, C. Borja, R. Montero, and J. Soler, "Small and high-directivity bow-tie patch antenna based on the Sierpinski fractal," Microwave and Optical Technology Letters, Vol. 31, No. 3, 239-241, 2001.        Google Scholar

8. Ang, B. K. and B. K. Chung, "A wideband E-shaped microstrip patch antenna for 5–6 GHz wireless communications," Progress In Electromagnetics Research, Vol. 75, 397-407, 2007.        Google Scholar

9. Singh, N., B. K. Kanaujia, M. Tariq Beg, Mainuddin, and S. Kumar, "A triple band circularly polarized rectenna for RF energy harvesting," Electromagnetics, Vol. 39, No. 7, 481-490, 2019.        Google Scholar

10. Banerjee, J., A. Karmakar, R. Ghatak, and D. R. Poddar, "Compact CPW-fed UWB MIMO antenna with a novel modified Minkowski fractal defected ground structure (DGS) for high isolation and triple band-notch characteristic," Journal of electromagnetic Waves and Applications, Vol. 31, No. 15, 1550-1565, 2017.        Google Scholar

11. Sarkar, C., D. Guha, C. Kumar, and Y. M. Antar, "New insight and design strategy to optimize cross-polarized radiations of microstrip patch over full bandwidth by probe current control," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 8, 3902-3909, 2018.        Google Scholar

12. Mishra, B., V. Singh, and R. Singh, "Gap coupled dual-band petal shape patch antenna for WLAN/WiMAX applications," Advances in Electrical and Electronic Engineering, Vol. 16, No. 2, 185-198, 2018.        Google Scholar

13. Joshi, A. and R. Singhal, "Vertex-fed Hexagonal antenna with low cross-polarization levels," Advances in Electrical and Electronic Engineering, Vol. 17, No. 2, 138-145, 2019.        Google Scholar

14. Haupt, R. L., Antenna Arrays. A Computational Approach, 2010.

15. Ludwig, R., "RF Circuit Design: Theory & Applications," Pearson Education, 2000.        Google Scholar

16. Wilkinson, E. J., "An N-way hybrid power divider," IRE Transactions on Microwave Theory and Techniques, Vol. 8, No. 1, 116-118, 1960.        Google Scholar

17. Gao, Y., C. C. Chiau, X. Chen, and C. G. Parini, "Modified PIFA and its array for MIMO terminals," IEE Proceedings — Microwaves, Antennas and Propagation, Vol. 152, No. 4, 255-259, 2005.        Google Scholar

18. Jayasinghe, J. M. J. W., J. Anguera, D. N. Uduwawala, and A. Andjar, "High-directivity genetic microstrip patch antenna," International Journal of Electronics Letters, Vol. 4, No. 3, 279-286, 2016.        Google Scholar

19. Ali, M. T., M. R. Kamarudin, T. B. A. Rahman, R. Sauleau, and M. N. Md Tan, "Design of reconfigurable multiple elements microstrip rectangular linear array antenna," Progress In Electromagnetics Research C, Vol. 6, 21-35, 2009.        Google Scholar

20. Liu, F., Z. Zhang, W. Chen, Z. Feng, and M. F. Iskander, "An endfire beam-switchable antenna array used in vehicular environment," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 195-198, 2010.        Google Scholar

21. Varum, T., J. Matos, P. Pinho, R. Abreu, A. Oliveira, and J. Lopes, "Microstrip antenna array for multiband dedicated short range communication systems," Microwave and Optical Technology Letters, Vol. 53, No. 12, 2794-2796, 2011.        Google Scholar

22. Cao, T., Y. Zou, A. M. Adawi, and M. J. Cryan, "Directive emission of red conjugated polymer embedded within zero index metamaterials," Optics Express, Vol. 22, No. 19, 22699-22706, 2014.        Google Scholar

23. Cao, T., G. Zheng, and S. Wang, "Chemical control of continuous light-steering using an array of gradient Au/Bi2Se3/Au strips," RSC Advances, Vol. 5, No. 85, 69319-69324, 2015.        Google Scholar

24. Cao, T., G. Zheng, S. Wang, and C. Wei, "Ultrafast beam steering using gradient Au-Ge2Sb2Te5-Au plasmonic resonators," Optics Express, Vol. 23, No. 14, 18029-18039, 2015.        Google Scholar

25. Chatterjee, A., T. Mondal, D. G. Patanvariya, and R. P. K. Jagannath, "Fractal-based design and fabrication of low-sidelobe antenna array," AEU --- International Journal of Electronics and Communications, Vol. 83, 549-557, 2018.        Google Scholar

26. Tran, X. L., J. Vesely, and F. Dvorak, "Optimization of nonuniform linear antenna array topology," Advances in Electrical and Electronic Engineering, Vol. 16, No. 3, 341-349, 2018.        Google Scholar

27. Patanvariya, D. G., A. Chatterjee, K. Kola, and S. Naik, "Design of a linear array of fractal antennas with high directivity and low cross-polarization for dedicated short range communication application," International Journal of RF and Microwave Computer-Aided Engineering, e 22083, 2019.        Google Scholar

28. Toh, B. Y., R. Cahill, and V. F. Fusco, "Understanding and measuring circular polarization," IEEE Transactions on Education, Vol. 46, No. 3, 313-318, 2003.        Google Scholar

29. Moharram, M. A. and A. A. Kishk, "MIMO antennas efficiency measurement using wheeler caps," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 3, 1115-1120, 2015.        Google Scholar