Vol. 102
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-05-13
Compact Dual-Band MIMO Antenna System for LTE Smartphone Applications
By
Progress In Electromagnetics Research C, Vol. 102, 13-30, 2020
Abstract
The design of an eight-port MIMO antenna at the sub-6-GHz (LTE 42/43 and 46) bandsfor fifth-generation (5G) smartphone is presented. First, based on the Babinet's principle, a microstrip slot antenna (MSA) is designed from its counterpart complementary structure, microstrip patch antenna (MPA) to operate over the LTE 46 band. In order to make the MSA to operate at the specified three LTE bands, a proposed single antenna, namely RMSA, is achieved by adding a strip-ring resonator within the grounded slot of MSA which shows a good measured impedance bandwidth (S11 ≤ -6 dB) of 3.28 ~ 3.84 GHz and 5.14 ~ > 6.0 GHz. Then, eight similar antenna elements of RMSA are printed on a smartphone printed circuit board (PCB). An FR4 substrate is used as the system PCB with an overall dimension of 80 × 150 × 0.8 mm3. Two techniques, namely polarization and pattern diversity, are exhibited by designing the MIMO system due to the orthogonal arrangement of microstrip lines feeding the RMSAs. Simulated and experimental results are conducted to examine the performance of the designed MIMO antenna. Good isolation, acceptable gain, and efficiency are obtained over the bands of interest which verify the suitability of the proposed system for MIMO smartphone applications.
Citation
Haneen Sobhi Aziz, and Dhirgham Kamal Naji, "Compact Dual-Band MIMO Antenna System for LTE Smartphone Applications," Progress In Electromagnetics Research C, Vol. 102, 13-30, 2020.
doi:10.2528/PIERC20021101
References

1. Parchin, N. O., H. J. Basherlou, M. Alibakhshikenari, Y. O. Parchin, Y. I. Al-Yasir, R. A. Abd-Alhameed, and E. Limiti, "Mobile-phone antenna array with diamond-ring slot elements for 5G massive MIMO Systems," Electronics, Vol. 8, No. 5, 1-17, 2019.

2. Rahman, M., M. N. Jahromi, S. S. Mirjavadi, and A. M. Hamouda, "Bandwidth enhancement and frequency scanning array antenna using novel UWB filter integration technique for OFDM UWB radar applications in wireless vital signs monitoring," Sensors, Vol. 18, 3155, 2018.
doi:10.3390/s18093155

3. Rahman, M., M. N. Jahromi, S. S. Mirjavadi, and A. M. Hamouda, "Resonator based switching technique between ultra wide band (UWB) and single/dual continuously tunable-notch behaviors in UWB radar for wireless vital signs monitoring," Sensors, Vol. 18, 3330, 2018.
doi:10.3390/s18103330

4. Rahman, M., M. N. Jahromi, S. S. Mirjavadi, and A. M. Hamouda, "Compact UWB band-notched antenna with integrated bluetooth for personal wireless communication and UWB Applications," Electronics, Vol. 8, 158, 2019.
doi:10.3390/electronics8020158

5. Park, J.-D., M. Rahman, and H. N. Chen, "Isolation enhancement of wide-band MIMO array antennas utilizing resistive loading," IEEE Access, Vol. 7, 81020-81026, 2019.
doi:10.1109/ACCESS.2019.2923330

6. Ai-Hadi, A. A., J. Ilvonen, R. Valkonen, and V. Viikari, "Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500 band," Microw. Opt. Technol. Lett., Vol. 56, 1323-1327, Jun. 2014.
doi:10.1002/mop.28316

7. Li, M.-Y., Y. L. Ban, Z. Q Xu, G. Wu, C. Sim, K. Kang, and Z. F. Yu, "Eightport orthogonally dual-polarized antenna array for 5G smartphone applications," IEEE Trans. Antennas Propag., Vol. 64, No. 9, 3820-3830, Sep. 2016.
doi:10.1109/TAP.2016.2583501

8. Li, M.-Y., Z.-Q. Xu, Y.-L. Ban, C.-Y.-D. Sim, and Z.-F. Yu, "Eight-port orthogonally dual-polarised MIMO antennas using loop structures for 5G smartphone," IET Microw., Antennas Propag., Vol. 11, 1810-1816, Dec. 2017.
doi:10.1049/iet-map.2017.0230

9. Li, M.-Y., Y. L. Ban, Z. Q. Xu, J. Guo, and Z. F. Yu, "Tri-polarized 12-antenna MIMO array for future 5G smartphone applications," IEEE Access, Vol. 6, 6160-6170, Jan. 2018.
doi:10.1109/ACCESS.2017.2781705

10. Wong, K.-L., C.-Y. Tsai, and J.-Y. Lu, "Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone," IEEE Trans. Antennas Propag., Vol. 65, No. 4, 1765-1778, Apr. 2017.
doi:10.1109/TAP.2017.2670534

11. Wong, K. L., B. W. Lin, and W. Y. Li, "Dual-band dual inverted F/loop antennas as a compact decoupled building block for forming eight 3.5/5.8-GHz MIMO antennas in the future smartphone," Microw. Opt. Technol. Lett., Vol. 59, 2715-2721, Nov. 2017.

12. Xu, H., H. Zhou, S. Gao, H. Wang, and Y. Cheng, "Multimode decoupling technique with independent tuning characteristic for mobile terminals," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6739-6751, Dec. 2017.
doi:10.1109/TAP.2017.2754445

13. Ren, Z. and A. Zhao, "Dual-band MIMO antenna with compact self-decoupled antenna pairs for 5G mobile applications," IEEE Access, Vol. 7, 82288-82296, 2019.
doi:10.1109/ACCESS.2019.2923666

14. Wong, K.-L., J.-Y. Lu, L.-Y. Chen, W.-Y. Li, and Y.-L. Ban, "8-antenna and 16-antenna array using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone," Microw. Opt. Technol. Lett., Vol. 58, 174-181, Jan. 2016.
doi:10.1002/mop.29527

15. Guo, J. L., L. Cui, C. Li, and B. H. Sun, "Side-edge frame printed eight-port dual-band antenna array for 5G smartphone applications," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 7412-7417, Dec. 2018.
doi:10.1109/TAP.2018.2872130

16. Li, Y., C.-Y.-D. Sim, Y. Luo, and G. Yang, "Metal-frame-integrated eight-element multiple-input multiple-output antenna array in the long term evolution bands 41/42/43 for fifth generation smartphones," Int. J. RF Microw. Comput. --- Aided Eng., Vol. 29, No. 1, Jan. 2019, Art. No. e21495.

17. Zhao, A. and Z. Ren, "Multiple-input and multiple-output antenna system with self-isolated antenna element for fifth-generation mobile terminals," Microw. Opt. Technol. Lett., Vol. 61, 20-27, Jan. 2019.
doi:10.1002/mop.31515

18. Zhao, A. and Z. Ren, "Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 1, 152-156, Jan. 2019.
doi:10.1109/LAWP.2018.2883428

19. Sun, L. B., H. Feng, Y. Li, and Z. Zhang, "Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal-mode pairs," IEEE Trans. Antennas Propag., Vol. 66, No. 11, 6364-6369, Nov. 2018.
doi:10.1109/TAP.2018.2864674

20. Hassan, N. and X. Fernando, "Massive MIMO wireless networks: An overview," Electronics, Vol. 6, 63, 2017.
doi:10.3390/electronics6030063

21. Li, Y., C.-Y.-D. Sim, Y. Luo, and G. Yang, "Multiband 10-antenna array for sub-6 GHz MIMO applications in 5-G smartphones," IEEE Access, Vol. 6, 28041-28053, 2018.
doi:10.1109/ACCESS.2018.2838337

22. Roy, S., S. Ghosh, and U. Chakarborty, "Compact dual wide-band four/eight elements MIMO antenna for WLAN applications," International Journal of RF and Microwave Computer-Aided Engineering, e21749, 2019.
doi:10.1002/mmce.21749

23. Qin, Z., W. Geyi, M. Zhang, and J. Wang, "Printed eight-element MIMO system for compact and thin 5G mobile handset," Electronics Letters, Vol. 52, No. 6, 416-418, 2016.
doi:10.1049/el.2015.3960

24. Li, Y. and G. Yang, "Dual-mode and triple-band 10-antenna handset array and its multiple-input multiple-output performance evaluation in 5G," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 2, e21538, 2019.
doi:10.1002/mmce.21530

25. Li, J., X. Zhang, Z. Wang, X. Chen, J. Chen, Y. Li, and A. Zhang, "Dual-band eight-antenna array design for MIMO applications in 5G mobile terminals," IEEE Access, Vol. 7, 71636-71644, 2019.
doi:10.1109/ACCESS.2019.2908969

26. Zou, H., Y. X. Li, C.-Y.-D. Sim, and G. L. Yang, "Design of 8 × 8 dual-band MIMO antenna array for 5G smartphone applications," Int. J. RF Microw. Comput. --- Aided Eng., Vol. 28, Nov. 2018, Art. No. e21420.

27. Li, Y. X., C.-Y.-D. Sim, Y. Luo, and G. L. Yang, "12-port 5G massive MIMO antenna array in sub-6GHz mobile handset for LTE bands 42/43/46 applications," IEEE Access, Vol. 6, 344-354, 2018.
doi:10.1109/ACCESS.2017.2763161

28. Chaudhari, A. A., V. Jadhav, S. U. Kharche, and R. K. Gupta, "Compact dual-band MIMO antenna with high isolation for 3/4G, Wi-Fi, bluetooth, Wi-MAX and WLAN applications," Progress In Electromagnetic Research Symposium (PIERS), 112-115, Aug. 8-11, 2016.

29. Ran, X., J. Wei, and Z. Yu, "Design of a dual-polarization dual-band MIMO antenna for wireless applications," International Conference on Modeling, Simulation and Optimization Technologies and Applications (MSOTA 2016), 2016.

30. Yang, L., H. Xu, J. Fang, and T. Li, "Four-element dual-band MIMO antenna system for mobile phones," Progress In Electromagnetics Research, Vol. 60, 47-56, 2015.

31. Jan, M. A., D. N. Aloi, and M. S. Sharawi, "A 2 × 1 compact dual band MIMO antenna system for wireless handheld terminals," IEEE Radio and Wireless Symposium, 23-26, 2012.

32. Yang, L., J. Fang, and T. Li, "Compact dual-band MIMO antenna system for mobile handset application," IEICE Transactions on Communications, Vol. 98, 2463-2469, 2015.
doi:10.1587/transcom.E98.B.2463

33. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., John Wiley & Sons, 2016.

34. Rahman, M., D.-S. Ko, and J.-D. Park, "A compact multiple notched ultra-wide band antenna with an analysis of the CSRR-to-CSRR coupling for portable UWB applications," Sensors, Vol. 17, 2174, 2017.
doi:10.3390/s17102174

35. Naji, D. K., "Design of a compact orthogonal broadband printed MIMO antennas for 5-GHz ISM band operation," Progress In Electromagnetics Research B, Vol. 64, 47-62, 2015.
doi:10.2528/PIERB15092104

36. Chae, S. H., S.-K. Oh, and S.-O. Park, "Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna ," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 2007.