Vol. 92
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-04-29
High-Frequency Energy Distribution of a Plasma Coated Paraboloid Reflector
By
Progress In Electromagnetics Research M, Vol. 92, 11-20, 2020
Abstract
This paper analyzes the high-frequency energy distribution of a paraboloid reflector in the presence of a uniform plasma layer. The curved surface of the paraboloid reflector is thought to be coated with a uniform plasma layer. The geometrical optics technique shows a singularity at the focal point of the paraboloid reflector. The singularity is removed with the help of Maslov's method, which also let us derive the integral equations that give the high-frequency energy distribution at the focal point. The analytical integral is solved numerically using a computational technique, and the effects of plasma frequency, collisional frequency, operating frequency, and multiple reflections on energy distribution at the focal point are observed. Under the special conditions our analytical and numerical results are obtained which align with the published literature.
Citation
Muhammad Hassnain Shahzad, Abdul Ghaffar, Muhammad Yasin Naz, and Haq Nawaz Bhatti, "High-Frequency Energy Distribution of a Plasma Coated Paraboloid Reflector," Progress In Electromagnetics Research M, Vol. 92, 11-20, 2020.
doi:10.2528/PIERM20022403
References

1. Alexeff, I., T. Anderson, E. Farshi, N. Karnam, and N. R. Pulasani, "Recent results for plasma antennas," Physics of Plasmas, Vol. 15, 057104, 2008.
doi:10.1063/1.2919157        Google Scholar

2. Kuz'min, G., I. Minaev, K. Rukhadze, V. Tarakanov, and O. Tikhonevich, "Reflector plasma array antennas," Journal of Communications Technology and Electronics, Vol. 57, 536-542, 2012.
doi:10.1134/S1064226912040110        Google Scholar

3. Alexeff, I., T. Anderson, S. Parameswaran, E. P. Pradeep, J. Hulloli, and P. Hulloli, "Experimental and theoretical results with plasma antennas," IEEE Transactions on Plasma Science, Vol. 34, 166-172, 2006.
doi:10.1109/TPS.2006.872180        Google Scholar

4. Jusoh, M. T., K. A. Ahmad, M. F. M. Din, and F. R. Hashim, "Reconfigurable antenna using plasma reflector," AIP Conference Proceedings, 020029, 2018.
doi:10.1063/1.5022923        Google Scholar

5. Ginzburg, V. L., "The propagation of electromagnetic waves in plasmas," International Series of Monographs in Electromagnetic Waves, 2nd Rev. and Enl. Edition, Pergamon, Oxford, 1970.        Google Scholar

6. Woods, L., The Propagation of Electromagnetic Waves in Plasmas, JSTOR, 1972.

7. Heald, M. A. and C. Wharton, Plasma Diagnostics with Microwaves, RE Krieger Pub. Co., 1978.

8. Gradov, O. and L. Stenflo, "On the parametric transparency of a magnetized plasma slab," Physics Letters A, Vol. 83, 257-258, 1981.
doi:10.1016/0375-9601(81)90977-4        Google Scholar

9. Vidmar, R., "On the use of atmospheric plasmas as electromagnetic reflectors," IEEE Transactions on Plasma Science, Vol. 21, 876-880, 1992.        Google Scholar

10. Smilyanskii, V., "Propagation of an electromagnetic wave across a magnetic field in a parabolic plasma layer," Journal of Applied Mechanics and Technical Physics, Vol. 12, 366-371, 1971.
doi:10.1007/BF00851617        Google Scholar

11. Bai, B., X. Li, Y. Liu, J. Xu, L. Shi, and K. Xie, "Effects of reentry plasma sheath on the polarization properties of obliquely incident EM waves," IEEE Transactions on Plasma Science, Vol. 42, 3365-3372, 2014.
doi:10.1109/TPS.2014.2349009        Google Scholar

12. Jazi, B., B. Davoudi-Rahaghi, M. R. Khajehmirzaei, and A. R. Niknam, "Energy distribution along the focal axis of a metallic cylindrical parabolic reflector covered with a plasma layer," IEEE Transactions on Plasma Science, Vol. 42, 286-292, 2014.
doi:10.1109/TPS.2013.2294404        Google Scholar

13. Bai, B., Y. Liu, X. Lin, and X. Li, "Effects of a reentry plasma sheath on the beam pointing properties of an array antenna," AIP Advances, Vol. 8, 035023, 2018.
doi:10.1063/1.5018813        Google Scholar

14. Mei, J. and Y.-J. Xie, "Effects of a hypersonic plasma sheath on the performances of dipole antenna and horn antenna," IEEE Transactions on Plasma Science, Vol. 45, 364-371, 2017.
doi:10.1109/TPS.2017.2656159        Google Scholar

15. Niknam, A., M. Khajehmirzaei, B. Davoudi-Rahaghi, Z. Rahmani, B. Jazi, and A. Abdoli-Arani, "Electromagnetic modeling of the energy distribution of a metallic cylindrical parabolic reflector covered with a magnetized plasma layer," Physics of Plasmas, Vol. 21, 073107, 2014.
doi:10.1063/1.4891425        Google Scholar

16. Wang, Z.-B., B.-W. Li, Q.-Y. Nie, X.-G. Wang, and F.-R. Kong, "Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs," AIP Advances, Vol. 6, 055312, 2016.
doi:10.1063/1.4950772        Google Scholar

17. Bai, B., X. Li, Y. Liu, and J. Xu, "Effects of reentry plasma sheath on mutual-coupling property of array antenna," International Journal of Antennas and Propagation, Vol. 2015, 2015.        Google Scholar

18. Ziolkowski, R. W. and G. A. Deschamps, "Asymptotic evaluation of high-frequency fields near a caustic: An introduction to Maslov's method," Radio Science, Vol. 19, 1001-1025, 1984.
doi:10.1029/RS019i004p01001        Google Scholar

19. Thomson, C. and C. Chapman, "An introduction to Maslov's asymptotic method," Geophysical Journal International, Vol. 83, 143-168, 1985.
doi:10.1111/j.1365-246X.1985.tb05161.x        Google Scholar

20. Hongo, K., Y. Ji, and E. Nakajima, "High-frequency expression for the field in the caustic region of a reflector using Maslov's method," Radio Science, Vol. 21, 911-919, 1986.
doi:10.1029/RS021i006p00911        Google Scholar

21. Hongo, K. and Y. Ji, "High-frequency expression for the field in the caustic region of a cylindrical reflector using Maslov's method," Radio Science, Vol. 22, 357-366, 1987.
doi:10.1029/RS022i003p00357        Google Scholar

22. Ghaffar, A. and M. A. Alkanhal, "Fields in the focal region of an elliptical reflector coated with an unmagnetized plasma layer," Waves in Random and Complex Media, Vol. 25, 405-416, 2015.
doi:10.1080/17455030.2015.1042093        Google Scholar

23. Ghaffar, A. and M. A. Alkanhal, "Electromagnetic field intensity distribution along the focal region of a metallic parabolic reflector covered with a plasma layer under oblique incidence," IEEE Transactions on Plasma Science, Vol. 43, 3801-3807, 2015.
doi:10.1109/TPS.2015.2478806        Google Scholar

24. Ghaffar, A. and M. Alkanhal, "Electromagnetic field intensity distribution along focal region of a metallic circular reflector covered with a plasma layer," Journal of the European Optical Society-Rapid Publications, Vol. 10, 2015.        Google Scholar

25. Bohren, C. F. and A. J. Hunt, "Scattering of electromagnetic waves by a charged sphere," Canadian Journal of Physics, Vol. 55, 1930-1935, 1977.
doi:10.1139/p77-235        Google Scholar

26. Klačka, J. and M. Kocifaj, "Scattering of electromagnetic waves by charged spheres and some physical consequences," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 106, 170-183, 2007.
doi:10.1016/j.jqsrt.2007.01.016        Google Scholar

27. Klacka, J. and M. Kocifaj, "On the scattering of electromagnetic waves by a charged sphere," Progress In Electromagnetics Research, Vol. 109, 17-35, 2010.
doi:10.2528/PIER10072708        Google Scholar

28. Kocifaj, M. and J. Klačka, "Scattering of electromagnetic waves by charged spheres: Near-field external intensity distribution," Optics Letters, Vol. 37, 265-267, 2012.
doi:10.1364/OL.37.000265        Google Scholar

29. Klačka, J., M. Kocifaj, F. Kundracik, G. Videen, and I. Kohút, "Generalization of electromagnetic scattering by charged grains through incorporation of interband and intraband effects," Optics Letters, Vol. 40, 5070-5073, 2015.
doi:10.1364/OL.40.005070        Google Scholar

30. Kocifaj, M., J. Klačka, F. Kundracik, and G. Videen, "Charge-induced electromagnetic resonances in nanoparticles," Annalen der Physik, Vol. 527, 765-769, 2015.
doi:10.1002/andp.201500202        Google Scholar

31. Zhou, J., X. Dou, and L. Xie, "Scattering and attenuation of electromagnetic waves by partly charged particles," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 206, 55-62, 2018.
doi:10.1016/j.jqsrt.2017.11.006        Google Scholar

32. Gurel, C. S. and E. Oncu, "Characteristics of electromagnetic wave propagation through a magnetised plasma slab with linearly varying electron density," Progress In Electromagnetics Research B, Vol. 21, 385-398, 2010.        Google Scholar

33. Balanis, C. A., Advanced Electromagnetic Engineering, John Wiley & Sons Comp., 1989.