1. Rappaport, T. S., S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813 Google Scholar
2. Rappaport, T. S., F. Gutierrez, E. Ben-Dor, J. N. Murdock, Y. Qiao, and J. I. Tamir, "Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1850-1859, 2013.
doi:10.1109/TAP.2012.2235056 Google Scholar
3. Narayan, C., Antennas and Propagation, , Technical Publications, 2007.
4. Alejos, A. V., M. G. Sanchez, and I. Cuinas, "Measurement and analysis of propagation mechanisms at 40 GHz: Viability of site shielding forced by obstacles," IEEE Trans. Veh. Technol., Vol. 57, No. 6, 3369-3380, 2008.
doi:10.1109/TVT.2008.920052 Google Scholar
5. Rajagopal, S., S. Abu-Surra, Z. Pi, and F. Khan, "Antenna array design for multi-gbps mm wave mobile broadband communication," Global Telecommunications Conference (GLOBECOM). IEEE, 1-6, 2011. Google Scholar
6. Sulyman, A. I., A. T. Nassar, M. K. Samimi, G. R. MacCartney, T. S. Rappaport, and A. Alsanie, "Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeterwave bands ," IEEE Communications Magazine, Vol. 52, 78-86, 2014.
doi:10.1109/MCOM.2014.6894456 Google Scholar
7. Sharawi, M. S., K. Podilchak, M. T. Hussain, and Y. M. M. Antar, "Dielectric resonator based MIMO antenna system enabling millimeter-wave mobile devices," IET Microwaves, Antennas & Propagation, 287-293, 2017.
doi:10.1049/iet-map.2016.0457 Google Scholar
8. Tu, D. T. T., N. G. Thang, and N. T. Ngoc, "28/38 GHz dual-band MIMO antenna with low mutual coupling using novel round patch EBG cell for 5G applications," International Conference on Advanced Technologies for Communications, 64-69, 2017. Google Scholar
9. Li, J.-F. and Q.-X. Chu, "A compact dual-band MIMO antenna of mobile phone," Journal of Electromagnetic Waves and Applications, Vol. 25, 1577-1586, 2011.
doi:10.1163/156939311797164800 Google Scholar
10. Amin, M. M., M. Mansor, N. Misran, and M. Islam, "28/38 GHz dual band slotted patch antenna with proximity-coupled feed for 5G communication," 2017 International Symposium on Antenna and Propagation (ISAP), 1-2, 2017. Google Scholar
11. Khattak, M. I., A. Sohail, U. Khan, Z. Barki, and G. Witjaksono, "Elliptical slot circular patch antenna array with dual band behavior for future 5G mobile communication networks," Progress In Electromagnetics Research C, Vol. 89, 133-147, 2019.
doi:10.2528/PIERC18101401 Google Scholar
12. Haraz, O. M., M. M. M. Ali, S. Alshebeili, and A.-R. Sebak, "Design of a 28/38 GHz dual-band printed slot antenna for the future 5G mobile communication networks," The 2015 IEEE AP-S Symposium on Antennas and Propagation and URSI CNC/USNC Joint Meeting, 1532-1533, 2015. Google Scholar
13. Grajek, P. R., B. Schoenlinner, and G. M. Rebeiz, "A 24-GHz high-gain Yagi-Uda antenna array," IEEE Trans. Antennas Propag., Vol. 52, 1257-1261, May 2004.
doi:10.1109/TAP.2004.827543 Google Scholar
14. Ta, S. X., S.-G. Kang, J. J. Han, and I. Park, "High-efficiency, high-gain, broadband Quasi-Yagi antenna and its array for 60-GHz wireless communications ," Journal of Electromagnetic Engineering and Science, Vol. 13, No. 3, 178-185, SEP, 2013.
doi:10.5515/JKIEES.2013.13.3.178 Google Scholar
15. Wu, X. Y. and P. S. Hall, "Substrate integrated waveguide Yagi-Uda antenna," Electronics Letters, Vol. 46, No. 23, 1541-1542, Nov. 2010.
doi:10.1049/el.2010.2558 Google Scholar
16. Naeini, M. R. and M. Fakharzadeh, "A 28 GHz beam-switching Yagi-Uda array using rotman lens for 5G wireless communications," International Symposium on Antennas and Propagation & USNC/URSI National Radio Science, 2017. Google Scholar
17. Lin, M., P. Liu, and Z. Guo, "Gain-enhanced Ka-band MIMO antennas based on the SIW corrugated technique," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 3084-3087, 2017.
doi:10.1109/LAWP.2017.2761903 Google Scholar
18. Alhalabi, R. A. and G. M. Rebeiz, "High-gain Yagi-Uda antennas for millimeter-wave switched-beam systems," IEEE Trans. Antennas Propag., Vol. 57, No. 11, 3672-3676, Nov. 2009.
doi:10.1109/TAP.2009.2026666 Google Scholar
19. Rafique Umair, K. H., "Dual-band microstrip patch antenna array for 5G mobile communications," 2017 Progress in Electromagnetics Research Symposium --- Fall (PIERS --- FALL), 55-59, Singapore, Nov. 19-22, 2017. Google Scholar
20. Marzouk, H. M., M. I. Ahmed, and A.-E. H. Shaalan, "Novel dual-band 28/38 GHz MIMO antennas for 5G mobile applications," Progress In Electromagnetics Research C, Vol. 93, 103-117, 2019.
doi:10.2528/PIERC19032303 Google Scholar