1. Sharma, S. K., S. Rao, and L. Shafia, Handbook of Reflector Antennas and Feed Systems, Artech House, 2013.
2. Carver, K. and J. Mink, "Microstrip antenna technology," IEEE Transactions on Antennas and Propagation, Vol. 29, No. 1, 2-24, 1981.
doi:10.1109/TAP.1981.1142523 Google Scholar
3. Kaushal, D., T. Shanmuganantham, and K. Sajith, "Dual band characteristics in a microstrip rectangular patch antenna using novel slotting technique," International Conference on Intelligent Computing, Instrumentation and Control Technologies, 2017. Google Scholar
4. Jose, J. V. and A. Shobha Rekh, "Emerging trends in high gain antennas for wireless communication," IEEE International Conference on Innovations in Electrical Electronics, Instrumentation and Media Technology, 2017. Google Scholar
5. Balanis, C. A., Antenna Theory, Analysis and Design, 2nd Ed., John Wiley & Sons Inc., 1997.
6. Ur Rahman, S., Q. Cao, I. Hussain, H. Khalil, M. Zeeshan, and W. Nazar, "Design of rectangular patch antenna array for 5G wireless communication," 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS), 1564-1568, St Petersburg, Russia, May 22-25, 2017. Google Scholar
7. Gonzalo, R., P. De Maagt, and M. Sorolla, "Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2131-2138, 1999.
doi:10.1109/22.798009 Google Scholar
8. Abhishek, K., R. Sharma, and S. Kumar, "Bandwidth enhancement using Z-shaped defected ground structure for a microstrip antenna," Microwave and Optical Technology Letters, Vol. 55, 2251-2254, 2013. Google Scholar
9. Singh, G., R. Rajni, and R. S. Momi, "Microstrip patch antenna with defected ground structure for bandwidth enhancement," International Journal of Computer Applications, Vol. 73, No. 9, 14-18, 2013.
doi:10.5120/12769-9759 Google Scholar
10. Weng, L. H., Y. C. Guo, X. W. Shi, and X. Q. Chen, "An overview on defected ground structure," Electromagnetic Research B, Vol. 7, 173-189, 2008.
doi:10.2528/PIERB08031401 Google Scholar
11. Mandal, K. and P. P. Sarkar, "A compact low profile wideband U-shape antenna with slotted circular ground plane," AEU-International Journal of Electronics and Communications, Vol. 70, No. 3, 336-340, 2016.
doi:10.1016/j.aeue.2015.12.011 Google Scholar
12. Mondal, T., S. Samantha, R. Ghatak, and S. R. Bhadra Chaudhuri, "A novel tri-band hexagonal microstrip patch antenna using Sierpinski fractal for vehicular communication," Progress In Electromagnetic Research C, Vol. 57, 25-34, 2015.
doi:10.2528/PIERC15021105 Google Scholar
13. Rakesh Kumar, P., K. Satya Prasad, and A. Guruva Reddy, "Dual polygonal slit square patch with defected ground plane for tri band operation," Microwave and Optical Technology Letters, Vol. 59, No. 5, 1071-1074, 2017.
doi:10.1002/mop.30457 Google Scholar
14. Khaleel, A. D., A. A. T. Rahem, M. F. bin Mansor, and C. K. Chakrabarty, "Design tri-band rectangular patch antenna for Wi-Fi, Wi-Max and WLAN in military band applications with radiation pattern suppression," Research Journal of Applied Sciences, Engineering and Technology, Vol. 10, 1445-1448, 2015.
doi:10.19026/rjaset.10.1847 Google Scholar
15. Garba, M. S., "Design of tri-band Z-shaped patch antenna for WLAN and WiMAX applications," International Journal of Research in Electronics and Communication Technology, Vol. 2, No. 4, 2015. Google Scholar
16. Rhazi, Y., O. El Bakkali, and Y. El Merabet, "Novel design of multiband microstrip patch antenna for wireless communication," Advances in Science, Technology and Engineering Systems Journal, Vol. 4, No. 3, 63-68, 2019.
doi:10.25046/aj040310 Google Scholar
17. Khan, I., D. Geetha, K. R. Sudhindra, T. Ali, and R. C. Biradar, "A frequency reconfigurable antenna loaded with H-shaped radiators for WLAN/WiMAX applications," International Journal of Applied Engineering Research, Vol. 13, No. 10, 8583-8587, 2018. Google Scholar
18. Ali, T., S. A. W. Mohammad, and R. C. Biradar, "A novel metamaterial rectangular CSRR with pass band characteristics at 2.95 and 5.23 GHz," 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology, 2017. Google Scholar
19. Kiani, S. H., S. S. Qureshi, K. Mahmood, M. Munir, and S. N. Khan, "Tri-band fractal patch antenna for GSM and satellite communication systems," International Journal of Advanced Computer Science and Applications, Vol. 7, No. 10, 2016. Google Scholar
20. Tajane, S. B., S. R. Gagare, and R. P. Labade, "Design of triple band microstrip patch antenna for WLAN and WiMAX applications," International Journal of Recent Trends in Engineering & Research, Vol. 2, No. 6, June 2016. Google Scholar
21. Ali, T. and R. C. Biradar, "A compact multiband antenna using λ/4 rectangular stub loaded with metamaterial for IEEE 802.11 N and IEEE 802.16 E," Microwave and Optical Technology Letters, Vol. 59, No. 5, 1000-1006, 2017.
doi:10.1002/mop.30454 Google Scholar
22. Ali, T. and R. C. Biradar, "A triple band highly miniaturized antenna for WiMAX/WLAN applications," Microwave and Optical Technology Letters, Vol. 60, No. 2, 466-471, 2018.
doi:10.1002/mop.30993 Google Scholar
23. Ali, T., M. M. Khaleeq, and R. C. Biradar, "A multiband reconfigurable slot antenna for wireless applications," AEU-International Journal of Electronics and Communications, Vol. 84, 273-280, 2018.
doi:10.1016/j.aeue.2017.11.033 Google Scholar
24. Sami, G., M. Mohanna, and M. L. Rabeh, "Tri-band microstrip antenna design for wireless communication applications," NRIAG Journal of Astronomy and Geophysics, Vol. 2, 39-44, 2013.
doi:10.1016/j.nrjag.2013.06.007 Google Scholar
25. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, 2nd Ed., Artech House, 2001.