Vol. 93
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-06-04
Design and Analysis of Compact Periodic Slot Multiband Antenna with Defected Ground Structure for Wireless Applications
By
Progress In Electromagnetics Research M, Vol. 93, 77-87, 2020
Abstract
A novel compact patch antenna with Defected Ground structure (DGS) operating for Wireless applications is proposed and investigated. This proposed antenna generates four separate resonances to cover 3.271 GHz (WiMax), 4.92 GHz (WiFi), 6.35 GHz (Space applications) and 11.04 GHz (Fixed Satellite applications) while maintaining overall compact size of 32 × 32 × 1.6 mm3 using an FR-4 substrate commonly available with a permittivity of εr = 4.4. The proposed microstrip patch antenna (MSPA) consists of a square radiator in which a Log Periodic slot is etched out along with square defects on ground surface and a microstrip feed line. The log periodic slot with DGS modifies the total current path thereby making the antenna operate at five useful bands. Structure displays the impedance bandwidth of 8.34% (3.10-3.37 GHz), 2.00% (4.88-4.98 GHz), 14.68% (6.27-7.194 GHz), and 5.41% (10.79-11.39 GHz) with gains 3.25 dB, 0.85 dB, 5.65 dB and 4.47 dB respectively. The antenna performance is analyzed using numerous parametric optimization studies, field distributions, and currents. Excellent agreement is obtained between measured and simulated results.
Citation
Bondili Siva Hari Prasad, and Makkapati Venkata Prasad, "Design and Analysis of Compact Periodic Slot Multiband Antenna with Defected Ground Structure for Wireless Applications," Progress In Electromagnetics Research M, Vol. 93, 77-87, 2020.
doi:10.2528/PIERM20032605
References

1. Sharma, S. K., S. Rao, and L. Shafia, Handbook of Reflector Antennas and Feed Systems, Artech House, Norwood, MA, 2013.

2. Carver, K. and J. Mink, "Microstrip antenna technology," IEEE Transactions on Antennas and Propagation, Vol. 29, No. 1, 2-24, 1981.
doi:10.1109/TAP.1981.1142523

3. Kaushal, D., T. Shanmuganantham, and K. Sajith, "Dual band characteristics in a microstrip rectangular patch antenna using novel slotting technique," International Conference on Intelligent Computing, Instrumentation and Control Technologies, 2017.

4. Jose, J. V. and A. Shobha Rekh, "Emerging trends in high gain antennas for wireless communication," IEEE International Conference on Innovations in Electrical Electronics, Instrumentation and Media Technology, 2017.

5. Balanis, C. A., Antenna Theory, Analysis and Design, 2nd Ed., John Wiley & Sons Inc., 1997.

6. Ur Rahman, S., Q. Cao, I. Hussain, H. Khalil, M. Zeeshan, and W. Nazar, "Design of rectangular patch antenna array for 5G wireless communication," 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS), 1564-1568, St Petersburg, Russia, May 22-25, 2017.

7. Gonzalo, R., P. De Maagt, and M. Sorolla, "Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2131-2138, 1999.
doi:10.1109/22.798009

8. Abhishek, K., R. Sharma, and S. Kumar, "Bandwidth enhancement using Z-shaped defected ground structure for a microstrip antenna," Microwave and Optical Technology Letters, Vol. 55, 2251-2254, 2013.

9. Singh, G., R. Rajni, and R. S. Momi, "Microstrip patch antenna with defected ground structure for bandwidth enhancement," International Journal of Computer Applications, Vol. 73, No. 9, 14-18, 2013.
doi:10.5120/12769-9759

10. Weng, L. H., Y. C. Guo, X. W. Shi, and X. Q. Chen, "An overview on defected ground structure," Electromagnetic Research B, Vol. 7, 173-189, 2008.
doi:10.2528/PIERB08031401

11. Mandal, K. and P. P. Sarkar, "A compact low profile wideband U-shape antenna with slotted circular ground plane," AEU-International Journal of Electronics and Communications, Vol. 70, No. 3, 336-340, 2016.
doi:10.1016/j.aeue.2015.12.011

12. Mondal, T., S. Samantha, R. Ghatak, and S. R. Bhadra Chaudhuri, "A novel tri-band hexagonal microstrip patch antenna using Sierpinski fractal for vehicular communication," Progress In Electromagnetic Research C, Vol. 57, 25-34, 2015.
doi:10.2528/PIERC15021105

13. Rakesh Kumar, P., K. Satya Prasad, and A. Guruva Reddy, "Dual polygonal slit square patch with defected ground plane for tri band operation," Microwave and Optical Technology Letters, Vol. 59, No. 5, 1071-1074, 2017.
doi:10.1002/mop.30457

14. Khaleel, A. D., A. A. T. Rahem, M. F. bin Mansor, and C. K. Chakrabarty, "Design tri-band rectangular patch antenna for Wi-Fi, Wi-Max and WLAN in military band applications with radiation pattern suppression," Research Journal of Applied Sciences, Engineering and Technology, Vol. 10, 1445-1448, 2015.
doi:10.19026/rjaset.10.1847

15. Garba, M. S., "Design of tri-band Z-shaped patch antenna for WLAN and WiMAX applications," International Journal of Research in Electronics and Communication Technology, Vol. 2, No. 4, 2015.

16. Rhazi, Y., O. El Bakkali, and Y. El Merabet, "Novel design of multiband microstrip patch antenna for wireless communication," Advances in Science, Technology and Engineering Systems Journal, Vol. 4, No. 3, 63-68, 2019.
doi:10.25046/aj040310

17. Khan, I., D. Geetha, K. R. Sudhindra, T. Ali, and R. C. Biradar, "A frequency reconfigurable antenna loaded with H-shaped radiators for WLAN/WiMAX applications," International Journal of Applied Engineering Research, Vol. 13, No. 10, 8583-8587, 2018.

18. Ali, T., S. A. W. Mohammad, and R. C. Biradar, "A novel metamaterial rectangular CSRR with pass band characteristics at 2.95 and 5.23 GHz," 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology, 2017.

19. Kiani, S. H., S. S. Qureshi, K. Mahmood, M. Munir, and S. N. Khan, "Tri-band fractal patch antenna for GSM and satellite communication systems," International Journal of Advanced Computer Science and Applications, Vol. 7, No. 10, 2016.

20. Tajane, S. B., S. R. Gagare, and R. P. Labade, "Design of triple band microstrip patch antenna for WLAN and WiMAX applications," International Journal of Recent Trends in Engineering & Research, Vol. 2, No. 6, June 2016.

21. Ali, T. and R. C. Biradar, "A compact multiband antenna using λ/4 rectangular stub loaded with metamaterial for IEEE 802.11 N and IEEE 802.16 E," Microwave and Optical Technology Letters, Vol. 59, No. 5, 1000-1006, 2017.
doi:10.1002/mop.30454

22. Ali, T. and R. C. Biradar, "A triple band highly miniaturized antenna for WiMAX/WLAN applications," Microwave and Optical Technology Letters, Vol. 60, No. 2, 466-471, 2018.
doi:10.1002/mop.30993

23. Ali, T., M. M. Khaleeq, and R. C. Biradar, "A multiband reconfigurable slot antenna for wireless applications," AEU-International Journal of Electronics and Communications, Vol. 84, 273-280, 2018.
doi:10.1016/j.aeue.2017.11.033

24. Sami, G., M. Mohanna, and M. L. Rabeh, "Tri-band microstrip antenna design for wireless communication applications," NRIAG Journal of Astronomy and Geophysics, Vol. 2, 39-44, 2013.
doi:10.1016/j.nrjag.2013.06.007

25. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, 2nd Ed., Artech House, Canton, MA, 2001.