Vol. 93
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-06-22
A New Speed Multiplier Coaxial Magnetic Gear
By
Progress In Electromagnetics Research M, Vol. 93, 145-154, 2020
Abstract
Due to certain conditions, electrical motor (EM) that operates at high speed may lead to magnetic saturation, thermal issue and stress to rotor structure. Magnetic gear (MG) designed for speed multiplier enables the prime mover from EM to operate at lower speed while the output gear multiplies the speed by its designated gear ratio at reduced torque. In this paper, a new coaxial magnetic gear is designed for speed multiplier. The role between inner yoke with PM and pole piece is switched. The inner part of magnetic gear is made to be stationary while the pole piece becomes inner rotor. The working principle is presented analytically. It used flux modulation techniques for torque and speed transmission. Torque characteristic and gear efficiency is analysed using finite element, and compared with existing speed multiplier magnetic gear with the same gear ratio of 7/3. Based on the simulation result, the proposed speed multiplier MG offers 16% better torque density and 12% higher gear efficiency at higher speed range. The structure of the inner rotor was also found to be more robust as only pole piece ring together with plastic is rotated instead of yoke with PM.
Citation
Mohd Firdaus Mohd Ab Halim, Erwan Bin Sulaiman, Raja Nor Firdaus, and Azhan Ab. Rahman, "A New Speed Multiplier Coaxial Magnetic Gear," Progress In Electromagnetics Research M, Vol. 93, 145-154, 2020.
doi:10.2528/PIERM20040103
References

1. Atay, F. M., "Magnetic saturation and steady-state analysis of electrical motors," Appl. Math. Model., Vol. 24, No. 11, 827-842, 2000.
doi:10.1016/S0307-904X(00)00016-0

2. Ahn, J.-W. and G. F. L. Lukman, "Switched reluctance motor: Research trends and overview," China Electrotech. Soc. Trans. Electr. Mach. Syst., Vol. 2, No. 4, 339-347, 2019.
doi:10.30941/CESTEMS.2018.00043

3. Ion, B. and T. Lucian, Reluctance Electric Machines: Design and Control, 2018.

4. Chen, L. L., C. S. Zhu, Z. Zhong, B. Liu, and A. Wan, "Rotor strength analysis for high-speed segmented surface-mounted permanent magnet synchronous machines," IET Electr. Power Appl., Vol. 12, No. 7, 979-990, 2018.
doi:10.1049/iet-epa.2017.0686

5. Dong, J., Y. Huang, L. Jin, and H. Lin, "Comparative study of surface-mounted and interior permanent-magnet motors for high-speed applications," IEEE Trans. Appl. Supercond., Vol. 26, No. 4, 26-29, 2016.

6. Tuysuz, A., F. Meyer, M. Steichen, C. Zwyssig, and J. W. Kolar, "Advanced cooling methods for high-speed electrical machines," IEEE Trans. Ind. Appl., Vol. 53, No. 3, 2077-2087, 2017.
doi:10.1109/TIA.2017.2672921

7. Karim, N., How washing machines work, 2000, https://www.howstuffworks.com.

8. Lombardo, T., Shifting gears on wind turbines, 2013, https://www.engineering.com.

9. Atallah, K. and D. Howe, "A novel high-performance linear magnetic gear," IEEE Trans. Magn., Vol. 37, No. 4, 2844-2846, 2001.
doi:10.1109/20.951324

10. Atallah, K., S. D. Calverley, and D. Howe, "Design, analysis and realisation of a high-performance magnetic gear," IEE Proceedings — Electric Power Appl., Vol. 150, No. 2, 139-145, 2004.

11. Atallah, K., S. D. Calverley, and D. Howe, "High-performance magnetic gears," J. Magn. Magn. Mater., Vol. 272–276, No. SUPPL. 1, 1727-1729, 2004.
doi:10.1016/j.jmmm.2003.12.520

12. Tallerico, T. F., J. J. Scheidler, and Z. A. Cameron, "Electromagnetic mass and efficiency of magnetic gears for electrified aircraft," 2019 AIAA/IEEE Electr. Aircr. Technol. Symp., 1-25, August 2019.

13. Kawanishi, K., K. Matsuo, T. Mizuno, K. Yamada, T. Okitsu, and K. Matsuse, "Development and performance of high-speed SPM synchronous machine," 2018 Int. Power Electron. Conf. IPECNiigata — ECCE Asia 2018, 169-176, 2018.
doi:10.23919/IPEC.2018.8507781

14. Gouda, E., S. Mezani, L. Baghli, and A. Rezzoug, "Comparative study between mechanical and magnetic planetary gears," IEEE Trans. Magn., Vol. 47, No. 2, 439-450, 2011.
doi:10.1109/TMAG.2010.2090890

15. Huang, C. C., M. C. Tsai, D. G. Dorrell, and B. J. Lin, "Development of a magnetic planetary gearbox," IEEE Trans. Magn., Vol. 44, No. 3, 403-412, 2008.
doi:10.1109/TMAG.2007.914665

16. Gim, C. S., E. J. Park, S. Y. Jung, and Y. J. Kim, "Torque characteristic analysis of coaxial magnetic gear according to fillet parameter of pole piece," ICEMS 2018 — 2018 21st Int. Conf. Electr. Mach. Syst., No. 1, 2557-2560, 2018.

17. Wang, L. L., J. X. Shen, Y. Wang, and K. Wang, "A novel magnetic-geared outer-rotor permanent-magnet brushless motor," Proceedings of the 4th IET International Conference on Power Electronics and Drives 2008, 33-36, 2008.

18. Jian, L., K. T. Chau, and J. Z. Jiang, "A magnetic-geared outer-rotor permanent-magnet brushless machine for wind power generation," IEEE Trans. Ind. Appl., Vol. 45, No. 3, 954-962, 2009.
doi:10.1109/TIA.2009.2018974

19. Sun, L., M. Cheng, and H. Jia, "Analysis of a novel magnetic-geared dual-rotor motor with complementary structure," IEEE Trans. Ind. Electron., Vol. 62, No. 11, 6737-6747, 2015.
doi:10.1109/TIE.2015.2437361

20. Pop, C. V. and D. Fodorean, "In-wheel motor with integrated magnetic gear for extended speed applications," 2016 Int. Symp. Power Electron. Electr. Drives, Autom. Motion, Vol. 1143, 413-418, 2016.
doi:10.1109/SPEEDAM.2016.7525873

21. Molokanov, O., P. Dergachev, S. Osipkin, E. Kuznetsova, and P. Kurbatov, "A novel double-rotor planetary magnetic gear," IEEE Trans. Magn., Vol. 54, No. 11, 1-5, 2018.
doi:10.1109/TMAG.2018.2837679

22. Park, E. J., C. S. Kim, S. Y. Jung, and Y. J. Kim, "Dual magnetic gear for improved power density in high-gear-ratio applications," ICEMS 2018 — 2018 21st Int. Conf. Electr. Mach. Syst., 2529-2532, 2018.

23. Gerber, S., Evaluation and design aspects of magnetic gears and magnetically geared electrical machines, Stellenbosch University, 2015.

24. Neves, C. G. C. and A. F. F. Filho, "Magnetic gearing electromagnetic concepts," J. Microwaves, Optoelectron. Electromagn. Appl., Vol. 16, No. 1, 108-119, 2017.
doi:10.1590/2179-10742017v16i1874

25. Joyce, D. E., Summary of trigonometric identities, 2020.

26. Neves, C. G. C., D. L. Figueiredo, and A. S. Nunes, "Magnetic gear: A review," 2014 11th IEEE/IAS Int. Conf. Ind. Appl., 1-6, 2014.

27. Lubin, T., S. Mezani, and A. Rezzoug, "Analytical computation of the magnetic field distribution in a magnetic gear," IEEE Trans. Magn., Vol. 46, No. 7, 2611-2621, 2010.
doi:10.1109/TMAG.2010.2044187

28. Zhang, X., X. Liu, C. Wang, and Z. Chen, "Analysis and design optimization of a coaxial surface-mounted permanent-magnet magnetic gear," Energies, Vol. 7, 8535-8553, 2014.
doi:10.3390/en7128535

29. Ye, X., Kilowatt three-phase rotary transformer design for permanent magnet DC motor with on-rotor drive system, MID Sweden University, 2016.

30. Tzanakis, I., M. Hodnett, I. V Bogdanov, S. S. Kozub, K. Sugo, and S. B. Kim, "Fundamental study on the magnetic field control method using multiple HTS coils for Magnetic Drug Delivery System Fundamental study on the magnetic field control method using multiple HTS coils for Magnetic Drug Delivery System," Journal of Physics: Conference Series, 1-6, 2017.

31. I, E. M., E. Sulaiman, and A. Zarafi, "A high torque segmented outer rotor permanent magnet flux switching motor for motorcycle propulsion," MUCET 2017, Vol. 150, 1-6, 2018.

32. Ridge, A. N., S. Ademi, R. A. Mcmahon, and H. Kelly, "Ferrite-based axial flux permanent magnet generator for wind turbines," J. Eng., Vol. 2019, No. PEMD 2018, 3942-3946, 2019.

33. Kimiabeigi, M., J. D. Widmer, R. S. Sheridan, A. Walton, and R. Harris, "Design of high performance traction motors using cheaper grade of materials," 8th IET International Conference on Power Electronics, Machines and Drives (PEMD 2016), Vol. 1, 1-7, 2016.

34. Kouhshahi, M. B., V. M. Acharya, M. Calvin, and J. Z. Bird, "Designing and experimentally testing a flux-focusing axial flux magnetic gear for an ocean generator application," IET Electr. Power Appl., Vol. 13, No. 8, 1212-1218, 2019.
doi:10.1049/iet-epa.2018.5931

35. Cai, H., H. Wang, M. Li, S. Shen, Y. Feng, and J. Zheng, "Torque ripple reduction for switched reluctance motor with optimized PWM control strategy," Energies, Vol. 11, No. 11, 2018.

36. Mateev, V. and I. Marinova, "Loss estimation of magnetic gears," Electr. Eng., No. 0123456789, 1-13, 2019.

37. Filippini, M., et al., "Magnetic loss analysis in coaxial magnetic gears," Electron., Vol. 8, No. 11, 1-15, 2019.
doi:10.3390/electronics8111320