1. Shkerdin, G., H. Alkorre, H. Guoqiang, and J. Stiens, "Modified TE modes of metal waveguide with integrated graphene structure in the sub-terahertz frequency range," IET Microwaves, Antennas & Propagation, Vol. 10, No. 6, 692-699, 2016.
doi:10.1049/iet-map.2015.0365 Google Scholar
2. Generalov, A. A., J. A. Haimakainen, D. V. Lioubtchenko, and A. V. Raisanen, "Wide band mm- and sub-mm-wave dielectric rod waveguide antenna," IEEE Transactions on Terahertz Science and Technology, Vol. 4, No. 5, 568-574, 2014.
doi:10.1109/TTHZ.2014.2342503 Google Scholar
3. Tajima, T., H.-J. Song, H. Matsuzaki, and M. Yaita, "LTCC-integrated H-plane bends for THz antenna-in-package solution," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 5, 440-442, 2017.
doi:10.1109/LMWC.2017.2690865 Google Scholar
4. Tajima, T., H.-J. Song, and M. Yaita, "Compact THz LTCC receiver module for 300 GHz wireless communications ," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 4, 291-293, 2016.
doi:10.1109/LMWC.2016.2537044 Google Scholar
5. Tajima, T., H.-J. Song, K. Ajito, M. Yaita, and N. Kukutsu, "300-GHz step-profiled corrugated horn antennas integrated in LTCC," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 11, 5437-5444, 2014.
doi:10.1109/TAP.2014.2350520 Google Scholar
6. Patidar, D., P. K. Singhal, H. K. Gupta, and G. Sharma, "Microstrip planner five-element Yagi-Uda antenna for ISM band application," International Journal of Engineering and Technology, Vol. 1, No. 4, 395-400, 2012.
doi:10.14419/ijet.v1i4.241 Google Scholar
7. Cai, R.-N., M.-C. Yang, S. Lin, X.-Q. Zhang, X.-Y. Zhang, and X.-F. Liu, "Design and analysis of printed yagi-uda antenna and two-element array for WLAN applications," International Journal of Antennas and Propagation, 1-8, 2012. Google Scholar
8. Rodriguez-Ulibarri, P. and T. Bertuch, "Microstrip-fed complementary Yagi-Uda Antenna," IET Microwaves, Antennas & Propagation, Vol. 10, No. 9, 926-931, 2016.
doi:10.1049/iet-map.2015.0734 Google Scholar
9. King, R.W. P. and S. S. Sandler, "The theory of broadside arrays," IEEE Transactions on Antennas and Propagation, 269-275, May 1964.
doi:10.1109/TAP.1964.1138204 Google Scholar
10. Guglielmi, M. and D. R. Jackson, "Broadside radiation from periodic leaky-wave antennas," IEEE Transactions On Antennas And Propagation, Vol. 41, No. I, 31-37, 1993.
doi:10.1109/8.210112 Google Scholar
11. Comite, D., S. K. Podilchak, P. Baccarelli, P. Burghignoli, A. Galli, A. P. Freundorfer, and Y. M. M. Antar, "Analysis and design of a compact leaky-wave antenna for wide-band broadside radiation,", Nature Scientific Reports, Vol. 8, No. 17741, 4-14, 2018. Google Scholar
12. Bayat-Makou, N., K.Wu, and A. A. Kishk, "Single-layer substrate-integrated broadside leaky long-slot array antennas with embedded reflectors for 5G systems," IEEE Transactions on Antennas And Propagation, Vol. 67, No. 12, 7331-7339, Dec. 2019.
doi:10.1109/TAP.2019.2930134 Google Scholar
13. Hesariand, S. S. and J. Bornemann, "Wideband circularly polarized substrate integrated waveguide end-fire antenna system with high gain," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2262-2265, 2017.
doi:10.1109/LAWP.2017.2713720 Google Scholar
14. Wang, A., L. Yang, Y. Zhang, Xi Li, X. Yi, and G. Wei, "A novel planar dual circularly polarized endfire antenna," IEEE Access, Vol. 7, 64297-64302, 2019.
doi:10.1109/ACCESS.2019.2915996 Google Scholar
15. Abdelrahim, W. and Q. Feng, "Compact broad band dual-band circularly polarised antenna for universal UHF RFID handheld reader and GPS applications," IET Microwaves, Antennas & Propagation, Vol. 13, No. 10, 1664-1670, 2019.
doi:10.1049/iet-map.2018.5970 Google Scholar
16. Lu, W. J., K. Wang, S.-S. Gu, L. Zhu, and H. Bo. Zhu, "Directivity enhancement of planar endfire circularly polarized antenna using V-shaped 1.5-wavelength dipoles," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1420-1423, 2019.
doi:10.1109/LAWP.2019.2918505 Google Scholar
17. Liu, J., H. Lu, Z. Li, Z. Liu, Z. Dong, C. Deng, X. Lv, and Y. Liu, "Wideband circularly polarized waveguide-fed antipodal exponential tapered slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 9, 1912-1916, 2019.
doi:10.1109/LAWP.2019.2933539 Google Scholar
18. Wang, M., L. Hu, J. Chen, S. Qi, and W. Wu, "Wideband circularly polarized square slot array fed by slotted waveguide for satellite communication," Progress In Electromagnetics Research Letters, Vol. 61, 111-118, 2016.
doi:10.2528/PIERL16030603 Google Scholar
19. Li, G., H. Zhai, T. Li, L. Li, and C. Liang, "CPW-fed S-shaped slot antenna for broad band circular polarization," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 619-622, 2013.
doi:10.1109/LAWP.2013.2261652 Google Scholar
20. Salari, M. and M. Movahhedi, "A new configuration for circularly polarized waveguide slot antenna," Proceedings of The Asia-Pacific Microwave Conference, 606-609, 2011. Google Scholar
21. Stilwell, R. K., R. E.Wallis, and M. L. Edwards, "A circularly polarized, electrically scanned slotted waveguide array suitable for high temperature environments," IEEE Antennas and Propagation Society International Symposium, Digest, 1030-1033, Held in Conjunction With: Usnc/Cnc/Ursi North American Radio Sci. Meeting, 2003. Google Scholar
22. Zhao, Y., K. Wei, Z. Zhang, and Z. Feng, "A waveguide antenna with bidirectional circular polarizations of the same sense," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 559-562, 2013.
doi:10.1109/LAWP.2013.2259462 Google Scholar
23. Wu, X., F. Yang, F. Xu, and J. Zhou, "Circularly polarized waveguide antenna with dual pairs of radiation slots at Ka-band," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2947-2950, 2017.
doi:10.1109/LAWP.2017.2755022 Google Scholar
24. Xu, J., M. Wang, H. Huang, and W. Wu, "Circularly polarized patch array fed by slotted waveguide," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 8-11, 2015.
doi:10.1109/LAWP.2014.2354072 Google Scholar
25. Xia, F. Y., Y. J. Cheng, Y. F. Wu, and Y. Fan, "V-band wideband circularly polarized endfire multibeam antenna with wide beam coverage," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 8, 1616-1620, 2019.
doi:10.1109/LAWP.2019.2925375 Google Scholar
26. Shang, Y., H. Yu, H. Fu, and W. M. Lim, "A 239-281 GHz CMOS receiver with on-chip circular-polarized substrate integrated waveguide antenna for sub-terahertz imaging," IEEE Transactions on Terahertz Science and Technology, Vol. 4, No. 6, 686-695, 2014.
doi:10.1109/TTHZ.2014.2352040 Google Scholar
27. Ansari, M., H. Zhu, N. Shariati, and Y. J. Guo, "Compact planar beamforming array with endfire radiating elements for 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 11, 6859-6869, 2019.
doi:10.1109/TAP.2019.2925179 Google Scholar
28. Elhefnawy, M. and A. A. Al-Hadi, "A novel design of slotted waveguide phased array antenna," Advanced Electromagnetics, Vol. 8, No. 3, 16-22, 2019.
doi:10.7716/aem.v8i3.1031 Google Scholar
29. Nisamol, T. A., K. K. Ansha, and P. Abdulla, "Design of sub-THz beam scanning antenna using Luneburg lens for 5G communications or beyond," Progress In Electromagnetics Research C, Vol. 99, 179-191, 2020.
doi:10.2528/PIERC19121101 Google Scholar
30. Ghasemi, A. and J.-J. Laurin, "A continuous beam steering slotted waveguide antenna using rotating dielectric slabs," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 6362-6370, 2019.
doi:10.1109/TAP.2019.2925272 Google Scholar
31. Lu, L., et al. "Design of low-sidelobe circularly polarized loop linear array fed by the slotted SIW," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 537-540, 2016. Google Scholar
32. Shang, X., M. Ke, Y. Wang, and M. J. Lancaster, "WR-3 band waveguides and filters fabricated using SU8 photoresist micromachining technology," IEEE Transactions on Terahertz Science and Technology, Vol. 2, No. 6, 629-637, 2012.
doi:10.1109/TTHZ.2012.2220136 Google Scholar
33. Russo, I., L. Boccia, G. Amendola, and H. Schumacher, "Compact hybrid coaxial architecture for 3 GHz–10 GHz UWB quasi-optical power combiners," Progress In Electromagnetics Research, Vol. 122, 77-92, 2012.
doi:10.2528/PIER11101704 Google Scholar