Vol. 101
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-05-16
UWB Microstrip-Fed Slot Antenna with Improved Bandwidth and Dual Notched Bands Using Protruded Parasitic Strips
By
Progress In Electromagnetics Research C, Vol. 101, 261-273, 2020
Abstract
In this research work, a new and simple design method of a compact slot antenna with dual notched bands is demonstrated for ultra-wideband (UWB) wireless networks. The presented antenna design is printed on a low-cost FR-4 substrate. Initially, an antenna with improved impedance bandwidth is designed. This is archived by employing the an extra slot with two T-shaped strips which increases the upper-frequency band of the design from 9 to 15 GHz. Later, undesirable bands including 4 GHz C-band, worldwide interoperability for microwave access (WiMAX) at 3.5/5.5 GHz (3.3 to 3.7 GHz and 5.15-5.85 GHz), wireless area network (WLAN) systems at 5-6 GHz (5.15-5.35 and 5.725-5.825 GHz) are eliminated by modifying the upper layer of the antenna using the protruded L-shaped strips inside the square radiation stub and the protruded E-shaped strip inside the feed-line. The proposed antenna offers quite good fundamental properties in terms of impedance bandwidth, gain, fidelity, radiation pattern, etc. A good agreement is observed between the measured and simulated results. Due to the simple structure and excellent performance of the design with controllable band-notch function, the presented microstrip antenna is useful for modern UWB wireless networksand can be an attractive
Citation
Naser Ojaroudi Parchin, Haleh Jahanbakhsh Basherlou, and Raed A. Abd-Alhameed, "UWB Microstrip-Fed Slot Antenna with Improved Bandwidth and Dual Notched Bands Using Protruded Parasitic Strips," Progress In Electromagnetics Research C, Vol. 101, 261-273, 2020.
doi:10.2528/PIERC20040701
References

1. Reed, J. H., An Introduction to Ultra-wideband Communication Systems, 1-50, Prentice Hall Press, 2005.

2. Allen, B., et al., Ultra-wideband Antennas and Propagation for Wireless Communications, Radar, and Imaging, John Wiley & Sons, 2007.

3. Federal Communications Commission, FCC 02–48, “First report and order on ultra-wideband technology, Washington, April 22, 2002.

4. Wiesbeck, W., et al., "Basic properties and design principles of UWB antennas," Proc. IEEE, 372-385, 2009.
doi:10.1109/JPROC.2008.2008838        Google Scholar

5. Parchin, N. O., et al., "Microwave/RF components for 5G front-end systems," Avid Science, 1-200, 2019.        Google Scholar

6. Wang, L., et al., "Compact UWB MIMO antenna with high isolation using fence-type decoupling structure," IEEE Antennas and Wireless Propagation Letters, 1641-1645, 2019.
doi:10.1109/LAWP.2019.2925857        Google Scholar

7. Azim, R., et al., "Compact tapered-shape slot antenna for UWB applications," IEEE Antennas Wireless Propag. Lett., 1190-1193, 2011.
doi:10.1109/LAWP.2011.2172181        Google Scholar

8. Ning, H., Unit and Ubiquitous Internet of Things, CRC Press, 2013.

9. Chahat, N., et al., "A compact UWB antenna for on-body applications," IEEE Trans. Antennas Propag., Vol. 59, 1123-1131, 2011.
doi:10.1109/TAP.2011.2109361        Google Scholar

10. Guo, L., et al., "Study of compact antenna for UWB applications," Electron. Lett., Vol. 46, 115-116, 2010.
doi:10.1049/el.2010.2772        Google Scholar

11. Siahkal-Mahalle, B. H., et al., "Enhanced bandwidth small square monopole antenna with band-notched functions for UWB wireless communications," Applied Computational Electromagnetics Society (ACES) Journal, 759-765, 2012.        Google Scholar

12. Parchin, N. O., et al., "Gain improvement of a UWB antenna using a single-layer FSS," 2019 PhotonIcs & Electromagnetics Research Symposium — Fall (PIERS — FALL), 1735-1739, Xiamen, China, December 17–20, 2019.        Google Scholar

13. Ojaroudi, N., et al., "UWB omnidirectional square monopole antenna for use in circular cylindrical microwave imaging systems," IEEE Antennas Wireless Propag. Lett., 1350-1353, 2012.
doi:10.1109/LAWP.2012.2227137        Google Scholar

14. Ojaroudi, N., "Small microstrip-fed slot antenna with frequency band-stop function," Telecommunications Forum, TELFOR, Belgrade, Serbia, November 27–28, 2013.        Google Scholar

15. Valizade, A., et al., "Band-notch slot antenna with enhanced bandwidth by using Ω-shaped strips protruded inside rectangular slots for UWB applications," Appl. Comput. Electromagn. Soc. (ACES) J., 816-822, 2012.        Google Scholar

16. Horestani, A. K., et al., "Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antenna," IEEE Trans. Antennas Propag., 3766-3776, 2016.
doi:10.1109/TAP.2016.2585183        Google Scholar

17. Ray, K. and S. Tiwari, "Ultra wideband printed hexagonal monopole antennas," IET Microw. Antennas Propag., Vol. 4, 437-445, 2010.
doi:10.1049/iet-map.2008.0201        Google Scholar

18. Ojaroudi, N., et al., "Compact ultra-wideband monopole antenna with enhanced bandwidthand dual band-stop properties," International Journal of RF and Microwave Computer-Aided Engineering, 346-357, 2014.        Google Scholar

19. Valizade, A., et al., "CPW-fed small slot antenna with reconfigurable circular polarization and impedance bandwidth characteristics for DCS/WiMAX applications," Progress In Electromagnetics Research C, 65-72, 2015.
doi:10.2528/PIERC14122901        Google Scholar

20. Li, T., et al., "Compact UWB antenna with tunable band-notched characteristic based on microstrip open-loop resonator," IEEE Antennas Wireless Propag. Lett., 1584-1587, 2012.
doi:10.1109/LAWP.2012.2234718        Google Scholar

21. Gheethan, A. A. and D. E. Anagnostou, "Dual band-reject UWB antenna with sharp rejection of narrow and closely-spaced bands," IEEE Trans. Antennas Propag., Vol. 60, 2071-2076, 2012.
doi:10.1109/TAP.2012.2186221        Google Scholar

22. Liu, X. L., Y. Z. Yin, P. A. Liu, J. H. Wang, and B. Xu, "A CPW-fed dual band-notched UWB antenna with a pair of bended dual-L-shape parasitic branches," Progress In Electromagnetics Research, Vol. 136, 623-634, 2013.
doi:10.2528/PIER12122507        Google Scholar

23. Shi, R., X. Xu, J. Dong, and Q. Luo, "Design and analysis of a novel dual band-notched UWB antenna," Int. J. Antennas Propag., 531959, 2014.        Google Scholar

24. Ding, J., Z. Lin, Z. Ying, and S. He, "A compact ultra-wideband slot antenna with multiple notch frequency bands," Microw. Opt. Technol. Lett., Vol. 49, 3056-3060, 2007.
doi:10.1002/mop.22892        Google Scholar

25. Shi, M., L. Cui, H. Liu, M. Lv, and X. B. Sun, "A new UWB antenna with band-notched characteristic," Progress In Electromagnetics Research M, Vol. 74, 201-209, 2018.
doi:10.2528/PIERM18081002        Google Scholar

26. Peng, L. and C. L. Ruan, "Design and time-domain analysis of compact multi-band-notched UWB antennas with EBG structures," Progress In Electromagnetics Research B, Vol. 47, 339-357, 2013.
doi:10.2528/PIERB12113012        Google Scholar

27. Li, T., H. Zhai, G. Li, L. Li, and C. Liang, "Compact UWB band-notched antenna design using interdigital capacitance loading loop resonator," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 724-727, 2012.
doi:10.1109/LAWP.2012.2204851        Google Scholar

28. Srivastava, G. and A. Mohan, "A planar UWB monopole antenna with dual band notched function," Microw. Opt. Technol. Lett., Vol. 57, 99-104, 2015.
doi:10.1002/mop.28790        Google Scholar

29. Yadav, S., A. K. Gautam, and B. K. Kanaujia, "Design of dual band-notched lamp-shaped antenna with UWB characteristics," Int. J. Microw. Wirel. Technol., Vol. 9, 395-402, 2015.
doi:10.1017/S1759078715001609        Google Scholar

30. Ojaroudi, N. and N. Ghadimi, "Dual-band CPW-fed slot antenna for LTE andWiBro applications," Microw. Opt. Technol. Lett., Vol. 56, 1013-1015, 2014.
doi:10.1002/mop.28254        Google Scholar

31. Parchin, N. O. and R. A. Abd-Alhameed, "A compact Vivaldi antenna array for 5G channel sounding applications," EuCAP, Vol. 846, London, UK, 2018.        Google Scholar

32. Parchin, N. O., et al., "UWB MM-Wave antenna array with quasi omnidirectional beams for 5G handheld devices," International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, China, 2016.        Google Scholar

33. Ansoft High Frequency Structure Simulator (HFSS), ver. 17, Ansoft Corporation, Pittsburgh, PA, 2017.

34. Parchin, N. O., "Low-profile air-filled antenna for next generation wireless systems," Wireless Personal Communications, Vol. 97, 3293-3300, 2017.
doi:10.1007/s11277-017-4519-2        Google Scholar

35. Ullah, A., et al., "Coplanar waveguide antenna with defected ground structure for 5G millimeter wave communications," IEEE MENACOMM’19, Bahrain, 2019.        Google Scholar

36. Ojaroudi, N. and N. Ghadimi, "Dual-band CPW-fed slot antenna with a pair of hook-shaped slits," Microw. Opt. Technol. Lett., 172-174, 2015.
doi:10.1002/mop.28805        Google Scholar

37. Al-Yasir, Y. I. A., et al., "A new polarization-reconfigurable antenna for 5G applications," Electronics, Vol. 7, 1-9, 2018.
doi:10.3390/electronics7110293        Google Scholar

38. Ojaroudiparchin, N., et al., "A switchable 3D-coverage phased array antenna package for 5G mobile terminals," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1747-1750, 2016.
doi:10.1109/LAWP.2016.2532607        Google Scholar

39. Bahmani, M., et al., "A compact UWB slot antenna with reconfigurable band-notched function for multimode applications," ACES Journal, Vol. 13, 975-980, 2016.        Google Scholar

40. Zolghadr, J., et al., "UWB slot antenna with band-notched property with time domain modeling based on genetic algorithm optimization," ACES Journal, Vol. 31, 926-932, 2016.        Google Scholar

41. Parchin, N. O., et al., "Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications," IEEE Access, Vol. 9, 15612-15622, 2019.
doi:10.1109/ACCESS.2019.2893112        Google Scholar

42. Parchin, N. O., M. Shen, and G. F. Pedersen, "Small-size tapered slot antenna (TSA) design for use in 5G phased array applications," Applied Computational Electromagnetics Society Journal, Vol. 32, 193-202, 2017.        Google Scholar

43. Parchin, N. O., et al., "Multi-band MIMO antenna design with user-impact investigation for 4G and 5G mobile terminals," Sensors, Vol. 19, 456, 2019.
doi:10.3390/s19030456        Google Scholar

44. Ojaroudi, M., et al., "Dual band-notch small square monopole antennawith enhanced bandwidth characteristics for UWB applications," ACES J., Vol. 25, 420-426, 2012.        Google Scholar

45. Ojaroudi, N., H. Ojaroudi, and N. Ghadimi, "Quadband planar inverted-F antenna (PIFA) for wireless communication systems," Progress In Electromagnetics Research Letters, Vol. 45, 51-56, 2014.
doi:10.2528/PIERL14012403        Google Scholar

46. Valizade, A., et al., "CPW-fed small slot antenna with reconfigurable circular polarization and impedance bandwidth characteristics for DCS/WiMAX applications," Progress In Electromagnetics Research C, Vol. 56, 65-72, 2015.
doi:10.2528/PIERC14122901        Google Scholar

47. Ojaroudi, N., "Design of microstrip antenna for 2.4/5.8GHz RFID applications," German Microwave Conference, GeMic 2014, RWTH Aachen University, Germany, March 10–12, 2014.        Google Scholar

48. Ojaroudi, N., "Circular microstrip antenna with dual band-stop performance for ultra-wideband systems," Microw. Opt. Technol. Lett., Vol. 56, 2095-2098, 2014.
doi:10.1002/mop.28515        Google Scholar

49. Mazloum, J., et al., "Bandwidth enhancement of small slot antenna with a variable band-stop function," Wireless Personal Communications, Vol. 95, 1147-1158, 2017.
doi:10.1007/s11277-016-3820-9        Google Scholar

50. Ojaroudi, N. and N. Ghadimi, "Design of CPW-fed slot antenna for MIMO system applications," Microw. Opt. Technol. Lett., Vol. 56, 1278-1281, 2014.
doi:10.1002/mop.28346        Google Scholar

51. Ojaroudi, N., "Design of ultra-wideband monopole antenna with enhanced bandwidth," 21th Telecommunications Forum (TELFOR 2013), Belgrade, Serbia, November 27–28, 2013.        Google Scholar

52. Parchin, N. O., R. A. Abd-Alhameed, and M. Shen, "A radiation-beam switchable antenna arrayfor 5G smartphones," 2019 PhotonIcs & Electromagnetics Research Symposium — Fall (PIERS — FALL), 1769-1774, Xiamen, China, December 17–20, 2019.        Google Scholar

53. Parchin, N. O., R. A. Abd-Alhameed, and M. Shen, "A substrate-insensitive antenna array withbroad bandwidth and high efficiency for 5G mobile terminals," 2019 PhotonIcs & Electromagnetics Research Symposium — Fall (PIERS — FALL), 1764-1768, Xiamen, China, December 17–20, 2019.        Google Scholar

54. Abdollahi, M. M., et al., "Octave-band monopole antenna with a horseshoe ground plane," ACES Journal, Vol. 30, 773-778, 2015.        Google Scholar

55. Horestani, A. K., et al., "Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas," IEEE Trans. Antennas Propag., 3766-3776, 2016.
doi:10.1109/TAP.2016.2585183        Google Scholar

56. Parchin, N. O., et al., "Dual-polarized MIMO antenna array design using miniaturized self-complementary structures for 5G smartphone applications," EuCAP’2019, Krakow, Poland, March 31–April 5, 2019.        Google Scholar

57. Ojaroudi, N., et al., "An omnidirectional PIFA for downlink and uplink satellite applications in C-band," Microwave and Optical Technology Letters, Vol. 56, 2684-2686, 2014.
doi:10.1002/mop.28672        Google Scholar

58. Parchin, N. O., et al., "Recent developmentsof reconfigurable antennas for current and future wireless communication systems," Electronics, Vol. 8, 128, 2019.
doi:10.3390/electronics8020128        Google Scholar

59. Schantz, H. G., G. Wolence, and E. M. Myszka, "Frequency notched UWB antenna," Proceedings of the IEEE Conference on Ultra-Wideband Systems and Technologies, 214-218, Reston, VA, USA, November 16–19, 2003.        Google Scholar

60. Sharawi, M. S., Printed MIMO Antenna Engineering, Artech House, 2014.