1. Takemoto, M., A. Chiba, H. Akagi, et al. "Radial force and torque of a bearingless switched reluctance motor operating in a region of magnetic saturation," IEEE Transactions on Industry Applications, Vol. 40, No. 1, 103-112, 2004.
doi:10.1109/TIA.2003.821816 Google Scholar
2. Sun, Y., F. Yu, Y. Yuan, Z. Huang, Y. Huang, and Z. Zhu, "A hybrid double Stator bearingless switched reluctance motor," Transactions of China Electrotechnical Society, Vol. 34, No. 1, 1-10, 2019. Google Scholar
3. Wang, H. and F. Li, "Design consideration and characteristic investigation of modular permanent magnet bearingless switched reluctance motor," IEEE Transactions on Industrial Electronics, Vol. 67, No. 6, 4326-4337, 2020.
doi:10.1109/TIE.2019.2931218 Google Scholar
4. Yuan, Y., Y. Huang, Q. Xiang, et al. "Mathematical modeling and control for a single winding bearingless flywheel motor in electric/suspension mode," Journal of Electrical Engineering & Technology, Vol. 13, No. 5, 1935-1944, 2018. Google Scholar
5. Huang, Y., F. Huang, Y. Yuan, F. Yang, and K. Xie, "Design and analysis of a novel nearingless segmented switched reluctance motor," IEEE Access, Vol. 7, 94342-94349, 2019.
doi:10.1109/ACCESS.2019.2927537 Google Scholar
6. Sun, Y., Y. Yuan, Y. Huang, W. Zhang, and L. Liu, "Development of the bearingless switched reluctance motor and its key technologies," Transactions of China Electrotechnical Society, Vol. 30, No. 22, 1-8, 2015. Google Scholar
7. Yang, Y., Z. Deng, G. Yang, X. Cao, and Q. Zhang, "A control strategy for bearingless switched reluctance motors," IEEE Transactions on Power Electronics, Vol. 25, No. 11, 2807-2819, 2010.
doi:10.1109/TPEL.2010.2051684 Google Scholar
8. He, Y., Y. Tang, D. Lee, and J. Ahn, "Suspending control scheme of 8/10 bearingless SRM based on adaptive fuzzy PID controller," Chinese Journal of Electrical Engineering, Vol. 2, No. 2, 60-67, 2016.
doi:10.23919/CJEE.2016.7933127 Google Scholar
9. Zhu, Z. and Y. Sun, "Universal decoupling control for bearingless switched reluctance motors based on the direct-inverse and correct-inverse system," Proceedings of the CSEE, Vol. 34, No. 33, 5902-5909, 2014. Google Scholar
10. Han, J., "From PID to active disturbance rejection control," IEEE Transactions on Industrial Electronics, Vol. 56, No. 3, 900-906, 2009.
doi:10.1109/TIE.2008.2011621 Google Scholar
11. Gao, Z., "Scaling and bandwidth-parameterization based controller tuning," Proceedings of the 2003 American Control Conference, 4989-4996, Denver, CO, USA, 2003. Google Scholar
12. Guo, B. and Z. Zhao, "On the convergence of an extended state observer for nonlinear systems with uncertainty," Systems & Control Letters, Vol. 60, No. 6, 420-430, 2011.
doi:10.1016/j.sysconle.2011.03.008 Google Scholar
13. Zhao, Z. and B. Guo, "A nonlinear extended state observer based on fractional power functions," Automatica, Vol. 81, 286-296, 2017.
doi:10.1016/j.automatica.2017.03.002 Google Scholar
14. Dong, L., Q. Zheng, and Z. Gao, "On control system design for the conventional mode of operation of vibrational gyroscopes," IEEE Sensors Journal, Vol. 8, No. 11, 1871-1878, 2008.
doi:10.1109/JSEN.2008.2006451 Google Scholar
15. Mauricio, A., C. Luigi, P. Carlos, C. Enrico, and N. Carlo, "UAV quadrotor attitude control: An ADRC-EMC combined approach," Control Engineering Practice, Vol. 84, 13-22, 2019. Google Scholar
16. Liu, C., G. Luo, Z. Chen, W. Tu, and C. Qiu, "A linear ADRC-based robust high-dynamic double-loop servo system for aircraft electro-mechanical actuators," Chinese Journal of Aeronautics, Vol. 32, No. 9, 2174-2187, 2019.
doi:10.1016/j.cja.2019.03.036 Google Scholar
17. Tian, C., P. Yan, and Z. Zhang, "Inter-sample output predictor based sampled-data ADRC supporting high precision control of VCM servo systems," Control Engineering Practice, Vol. 85, 138-148, 2019.
doi:10.1016/j.conengprac.2019.01.012 Google Scholar
18. Tian, G., "Reduced-order extended state observer and frequency response analysis,", Cleveland State University, Cleveland, 2007. Google Scholar
19. Chen, H., H. Yang, Y. Chen, and H. Iu, "Reliability assessment of the switched reluctance motor drive under single switch chopping strategy," IEEE Transactions on Power Electronics, Vol. 31, No. 3, 2395-2408, 2016.
doi:10.1109/TPEL.2015.2429557 Google Scholar
20. Moron, C., A. Garcia, E. Tremps, and J. Somolinos, "Torque control of switched reluctance motors," IEEE Transactions on Magnetics, Vol. 48, No. 4, 1661-1664, 2012.
doi:10.1109/TMAG.2011.2173169 Google Scholar
21. Jakobsen, U., K. Lu, P. O. Rasmussen, D. Lee, and J. Ahn, "Sensorless control of low-cost single-phase hybrid switched reluctance motor drive," IEEE Transactions on Industry Applications, Vol. 51, No. 3, 2381-2387, 2015.
doi:10.1109/TIA.2014.2385939 Google Scholar
22. Li, X. and P. Shamsi, "Inductance surface learning for model predictive current control of switched reluctance motors," IEEE Transactions on Transportation Electrification, Vol. 1, No. 3, 287-297, 2015.
doi:10.1109/TTE.2015.2468178 Google Scholar
23. Zhang, M., L. Yang, Y. Hou, Y. Shi, and G. Zuo, "Improved linear active disturbance rejection controller with Denoising Performance," Journal of Astronautics, Vol. 40, No. 7, 803-810, 2019. Google Scholar
24. Yao, S., G. Gao, and Z. Gao, "Bandwidth parameterized disturbance observer composite sliding mode coordination control for closed chain mechanisms," Control Theory & Applications, 1-7. Google Scholar
25. Li, P., J. Ma, and Z. Zheng, "Sliding mode control approach based on nonlinear integrator," Control Theory & Applications, Vol. 28, No. 5, 619-624, 2011. Google Scholar