1. Zhang, Y. and J. Mao, "An overview of the development of antenna-in-package technology for highly integrated wireless devices," Proceedings of the IEEE, 2019. Google Scholar
2. Anab, M., M. I. Khattak, S. M. Owais, A. Ali Khattak, and A. Sultan, "Design and analysis of millimeter wave dielectric resonator antenna for 5G wireless communication systems," Progress In Electromagnetics Research C, Vol. 98, 239-255, 2020.
doi:10.2528/PIERC19102404 Google Scholar
3. Alavi, S., et al. "Towards 5G: A photonic based millimeter wave signal generation for applying in 5G access fronthaul," Scientific Reports, Vol. 6, 19891, 2016.
doi:10.1038/srep19891 Google Scholar
4. Al-Shareefi, N. A., S. I. S. Hassan, M. F. B. A. Malek, R. Ngah, S. A. Abbas, and S. A. Aljunid, "A cost-effective method for high-quality 60GHz optical millimeter wave signal generation based on frequency quadrupling," Progress In Electromagnetics Research, Vol. 137, 255-274, 2013.
doi:10.2528/PIER13011307 Google Scholar
5. Liu, C., M.-H. Yang, and X.-W. Sun, "Towards robust human millimeter wave imaging inspection system in real time with deep learning," Progress In Electromagnetics Research, Vol. 161, 87-100, 2018.
doi:10.2528/PIER18012601 Google Scholar
6. Agarwal, S., D. Singh, and N. P. Pathak, "Active millimeter wave radar system for non-destructive, non-invasive underline fault detection and multilayer material analysis," 2014 IEEE International Microwave and RF Conference (IMaRC), 2014. Google Scholar
7. Mosalanejad, M., S. Brebels, C. Soens, I. Ocket, and G. A. E. Vandenbosch, "Millimeter wave cavity backed microstrip antenna array for 79 GHz radar applications," Progress In Electromagnetics Research, Vol. 158, 89-98, 2017.
doi:10.2528/PIER17010407 Google Scholar
8. Jackson, D. R., et al. "Microstrip patch designs that do not excite surface waves," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 8, 1026-1037, 1993.
doi:10.1109/8.244643 Google Scholar
9. Gauthier, G. P., et al. "A 94-GHz aperture-coupled micromachined microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 12, 1761-1766, 1999.
doi:10.1109/8.817650 Google Scholar
10. Papapolymerou, I., R. F. Drayton, and L. P. Katehi, "Micromachined patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 2, 275-283, 1998.
doi:10.1109/8.660973 Google Scholar
11. Chu, H., et al. "135-GHz micromachined on-chip antenna and antenna array," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 10, 4582-4588, 2012.
doi:10.1109/TAP.2012.2209855 Google Scholar
12. Yook, J.-G. and L. P. Katehi, "Micromachined microstrip patch antenna with controlled mutual coupling and surface waves," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 9, 1282-1289, 2001.
doi:10.1109/8.947019 Google Scholar
13. Ojefors, E., et al. "Micromachined loop antennas on low resistivity silicon substrates," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 12, 3593-3601, 2006.
doi:10.1109/TAP.2006.886532 Google Scholar
14. Vaughan, M. J., K. Y. Hur, and R. C. Compton, "Improvement of microstrip patch antenna radiation patterns," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 6, 882-885, 1994.
doi:10.1109/8.301717 Google Scholar
15. Gauthier, G. P., A. Courtay, and G. M. Rebeiz, "Microstrip antennas on synthesized low dielectric-constant substrates," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 8, 1310-1314, 1997.
doi:10.1109/8.611252 Google Scholar
16. Yang, H.-Y., N. G. Alexopoulos, and E. Yablonovitch, "Photonic band-gap materials for high-gain printed circuit antennas," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 1, 185-187, 1997.
doi:10.1109/8.554261 Google Scholar
17. Pan, B., et al. "Analysis and characterization of a high-performance Ka-band surface micromachined elevated patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 511-514, 2006.
doi:10.1109/LAWP.2006.886305 Google Scholar
18. Marnat, L., et al. "New movable plate for efficient millimeter wave vertical on-chip antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1608-1615, 2013.
doi:10.1109/TAP.2013.2241720 Google Scholar
19. Kim, I. K. and V. V. Varadan, "Electrically small, millimeter wave dual band meta-resonator antennas," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 11, 3458-3463, 2010.
doi:10.1109/TAP.2010.2071341 Google Scholar
20. Huang, J.-H., et al. "A 24/60 GHz dual-band millimeter-wave on-chip monopole antenna fabricated with a 0.13-μm CMOS technology," 2009 IEEE International Workshop on Antenna Technology, IEEE, 2009. Google Scholar
21. Katehi, L. P., J. F. Harvey, and E. Brown, "MEMS and Si micromachined circuits for high-frequency applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 3, 858-866, 2002.
doi:10.1109/22.989969 Google Scholar
22. Maci, S. and G. B. Gentili, "Dual-frequency patch antennas," IEEE Antennas and Propagation Magazine, Vol. 39, No. 6, 13-20, 1997.
doi:10.1109/74.646798 Google Scholar
23. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2009.
24. Sharma, P. and S. K. Koul, "Design and development of millimeter-wave micromachined patch antennas," IETE Journal of Research, Vol. 55, No. 1, 40-50, 2009.
doi:10.4103/0377-2063.51326 Google Scholar
25. Hsu, Y.-C., K.-H. Lin, and Y.-C. Huang, "A scale-sized model for analysis of vehicular antennas," 2007 IEEE Antennas and Propagation Society International Symposium, IEEE, 2007. Google Scholar
26. Hesler, J. L., et al. "Analysis of an octagonal micromachined horn antenna for submillimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 6, 997-1001, 2001.
doi:10.1109/8.931159 Google Scholar
27. Eckart, A., A. Harris, and R. Wohlleben, "Scaled model measurements of the sandwiched V-antenna," International Journal of Infrared and Millimeter Waves, Vol. 9, No. 6, 505-520, 1988.
doi:10.1007/BF01013286 Google Scholar
28. Hasch, J., et al. "Patch antenna on micromachined silicon," Silicon Monolithic Integrated Circuits in RF Systems, 2004. Google Scholar
29. Chiappe, M. and G. L. Gragnani, "Vivaldi antennas for microwave imaging: Theoretical analysis and design considerations," IEEE Transactions on Instrumentation and Measurement, Vol. 55, No. 6, 1885-1891, 2006.
doi:10.1109/TIM.2006.884289 Google Scholar
30. Sinclair, G., "Theory of models of electromagnetic systems," Proceedings of the IRE, Vol. 36, No. 11, 1364-1370, 1948.
doi:10.1109/JRPROC.1948.232289 Google Scholar