Vol. 94
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-07-27
Printed GNSS and Bluetooth Antennas Embedded on Flexible Low Loss Substrates for Wearable Applications
By
Progress In Electromagnetics Research M, Vol. 94, 189-199, 2020
Abstract
This paper presents Global Navigation Satellite System (GNSS) F-type and Bluetooth (BT) L-shaped antennas printed on flexible low loss substrate materials for smartwatch applications. The proposed printed antennas were designed along with the wristband of a smartwatch device with the main purpose of improving their electrical performance by using a new low loss polymer material and locating the antenna on the wrist strap. The antenna performances were simulated using CST Microwave Studio, and the prototypes were measured in a Satimo StarLab anechoic chamber. Silver printing and injection molding technologies were successfully utilized for fabricating new SEBS materials (styrene-ethylene-butylene-styrene) in wearable devices. The SEBS materials improved the radiation efficiency of the antennas by 1.6 dB for the GNSS and 2.2 dB for the BT over the previously used TPU (thermoplastic polyurethane) materials. The overmolded printed and hybrid integrated discrete antennas produced added-value for electronics fabrication thanks to its flexible and seamless integration technique. In addition, it is a low-cost mass manufacturing method. The research opens new perspectives for product definitions with a flexible, low loss material that enables better antenna performance.
Citation
Omodara Gbotemi, Sami Myllymäki, Heli Jantunen, Jari Juuti, Sami Ihme, Marika Kurkinen, Ville Majava, Marko Tuhkala, and Juhani Kemppainen, "Printed GNSS and Bluetooth Antennas Embedded on Flexible Low Loss Substrates for Wearable Applications," Progress In Electromagnetics Research M, Vol. 94, 189-199, 2020.
doi:10.2528/PIERM20042303
References

1. Sankaralingam, S., S. Dhar, and B. Gupta, "Preliminary studies on performance of a 2.45 GHz wearable antenna in the vicinity of human body," Proceedings of the 2012 International Conference on Communications, Devices and Intelligent Systems, CODIS 2012, 2012.

2. Raad, H. K., H. M. Al-Rizzo, A. I. Abbosh, and A. I. Hammoodi, "A compact dual band polyimide based antenna for wearable and flexible telemedicine devices," Progress In Electromagnetics Research C, Vol. 63, 153-161, 2016.
doi:10.2528/PIERC16010707

3. Al-Sehemi, A., A. Al-Ghamdi, N. Dishovsky, G. Atanasova, and N. Atanasov, "A flexible planar antenna on multilayer rubber composite for wearable devices," Progress In Electromagnetics Research C, Vol. 75, 31-42, 2017.
doi:10.2528/PIERC17031701

4. Jia, Y., L. Liu, J. Hu, and L. J. Xu, "Miniaturized wearable watch antenna for wristband applications," IEEE MTT-S 2019 International Microwave Biomedical Conference, IMBioC 2019 - Proceedings, 2019.

5. Li, G., G. Gao, J. Bao, B. Yi, C. Song, and L. A. Bian, "A watch strap antenna for the applications of wearable systems," IEEE Access, Vol. 5, 2017.

6. Alkhamis, R., J. Wigle, and H. Song, "Global positioning system and distress signal frequency wrist wearable dual-band antenna," Microw. Opt. Technol. Lett., 2057-2064, 2017.
doi:10.1002/mop.30673

7. Chen, J., M. Berg, V. Somero, H. Y. Amin, and A. Pärssinen, "A multiple antenna system design for wearable device using theory of characteristic mode," European Conference on Antennas and Propagation, London, UK, 2018.

8. Chung, M. A., "Embedded 3D multi-band antenna with ETS process technology covering LTE/WCDMA/ISM band operations in a smart wrist wearable wireless mobile communication device design," IET Microwaves Antennas & Propagation, Vol. 14, No. 12, 2020.

9. Ferreira, D., P. Pires, R. Rodrigues, and R. F. S. Caldeirinha, "Wearable textile antennas: Examining the effect of bending on their performance," IEEE Antennas and Propagation Magazine, Vol. 59, No. 3, 54-59, 2017.
doi:10.1109/MAP.2017.2686093

10. Ismail, S., P. A. Gaydecki, and A. Barton, "A flexible wearable antenna for location tracking applications," Int. J. Commun. Antenna. Propag., Vol. 8, No. 6, 494-499, 2018.

11. Prudhvi Nadh, B., B. T. P. Madhav, M. Siva Kumar, M. Venkateswara Rao, and T. Anilkumar, "Asymmetric ground structured circularly polarized antenna for ISM and WLAN band applications," Progress In Electromagnetics Research M, Vol. 76, 167-175, 2018.
doi:10.2528/PIERM18091405

12. Raad, H., "An UWB antenna array for flexible IoT wireless systems," Progress In Electromagnetics Research, Vol. 162, 109-121, 2018.
doi:10.2528/PIER18060804

13. Bhattacharjee, S., S. Maity, S. R. B. Chaudhuri, and M. Mitra, "Compact dual-band dual-polarized omnidirectional antenna for on-body applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5044-5053, 2019.
doi:10.1109/TAP.2019.2891633

14. Bhattacharjee, S., M. Midya, M. Mitra, and S. R. B. Chaudhuri, "Dual band-dual polarized planar inverted F-antenna for MBAN applications," International Journal of Microwave and Wireless Technologies, Vol. 11, No. 1, 76-86, 2019.
doi:10.1017/S1759078718001228

15. Wang, W., X. W. Xuan, P. Pan, and Y. J. Hua, "A low-profile dual-band omnidirectional Alford antenna for wearable WBAN applications," Microwave and Optical Technology Letters, Vol. 62, No. 5, 2040-2046, 2020.
doi:10.1002/mop.32270

16. Bhattacharjee, S., S. Teja, M. Midya, S. R. B. Chaudhuri, and M. Mitra, "Dual band dual mode triangular textile antenna for body-centric communications," URSI Asia-Pacific Radio Science Conference (AP-RASC), 1-4, 2019.

17. Flores-Cuadras, J. R., J. L. Medina-Monroy, R. A. Chavez-Perez, and H. Lobato-Morales, "Novel ultra-wideband flexible antenna for wearable wrist worn devices with 4G LTE communications," Microw. Opt. Technol. Lett., Vol. 59, 777-783, 2017.
doi:10.1002/mop.30393