1. FCC "Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems,", Tech. Rep. ETDocket 98–153, FCC02-48, Federal Communications Commission, Apr. 2002.
doi:10.1163/156939303322235842 Google Scholar
2. Chen, F. C. and W. C. Chew, "Time-domain ultra-wideband microwave imaging radar system," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 313-331, 2003. Google Scholar
3. George, T. and B. Lethakumary, "High frequency rejection using L shaped defected microstrip structure in ultra wideband bandpass filter," Materials Today: Proceedings, Vol. 25, Part 2, 265-268, Feb. 8, 2020.
doi:10.1093/ietele/e90-c.8.1652 Google Scholar
4. Hung, C. Y., M. H. Weng, and Y. K. Su, "Design of compact and sharp rejection UWB BPFs using interdigital stepped-impedance resonators," IEICE Electron. Lett., Vol. 90, 1652-1654, 2007. Google Scholar
5. Chang, Y. C., C. H. Kao, M. H. Weng, and R. Y. Yang, "Design of the compact wideband bandpass filter with low loss, high selectivity and wide stopband," IEEE Microw. Wirel. Compon. Lett., Vol. 18, 187-189, 2008.
doi:10.1109/LMWC.2007.911972 Google Scholar
6. Wong, S. W. and L. Zhu, "Implementation of compact UWB bandpass filter with a notch-band," IEEE Microw. Wirel. Compon. Lett., Vol. 18, 10-12, 2008.
doi:10.1109/LMWC.2013.2296291 Google Scholar
7. Song, Y., G. M. Yang, and W. Geyi, "Compact UWB bandpass filter with dual notched bands using defected ground structures," IEEE Microw. Wirel. Compon. Lett., Vol. 24, 230-232, 2014.
doi:10.2528/PIERL18111302 Google Scholar
8. Liu, J., W. Ding, J. Chen, and A. Zhang, "New ultra-wideband filter with sharp notched band using defected ground structure," Progress In Electromagnetics Research Letters, Vol. 83, 99-105, 2019.
doi:10.2528/PIERL17092503 Google Scholar
9. Choudhary, D. K. and R. K. Chaudhary, "A compact via-less metamaterial wideband bandpass filter using split circular rings and rectangular stub," Progress In Electromagnetics Research Letters, Vol. 72, 99-106, 2018.
doi:10.2528/PIERL18121101 Google Scholar
10. Ji, X.-C., W.-S. Ji, L.-Y. Feng, Y.-Y. Tong, and Z.-Y. Zhang, "Design of a novel multi-layer wideband bandpass filter with a notched band," Progress In Electromagnetics Research Letters, Vol. 82, 9-16, 2019. Google Scholar
11. Hsu, C. L., F. C. Hsu, and J. K. Kuo, "Microstrip bandpass filters for ultra-wideband (UWB) wireless communications," IEEE MTT-S International Microwave Symposium Digest, 4, 682, IEEE, 2005.
doi:10.1002/mop.22471 Google Scholar
12. Yang, G. M., et al. "Design of ultra-wide band (UWB) bandpass filter based on defected ground structure," Microwave and Optical Technology Letters, Vol. 49, No. 6, 1374-1377, 2010. Google Scholar
13. Wu, C. H., et al. "A compact LTCC ultra-wideband bandpass filter using semi-lumped parallel-resonance circuits for spurious suppression," 2007 European Microwave Conference, 532-535, Munich, 2007.
doi:10.1002/mop.21133 Google Scholar
14. Hong, J.-S. and H. Shaman, "An optimum ultra-wideband microstrip filter," Microwave and Optical Technology Letters, Vol. 47, No. 3, 230-233, 2010. Google Scholar
15. Wong, W. T., et al. "Highly selective microstrip bandpass filters for ultra-wideband (UWB) applications," 2005 Asia-Pacific Microwave Conference Proceedings, 4, IEEE, 2005.
doi:10.1109/LMWC.2006.890335 Google Scholar
16. Shaman, H. and J. S. Hong, "A novel ultra-wideband (UWB) bandpass filter (BPF) with pairs of transmission zeroes," IEEE Microw. Wirel. Compon. Lett., Vol. 17, No. 2, 121-123, 2007. Google Scholar
17. Shaman, H. and J. S. Hong, "An optimum ultra-wideband (UWB) bandpass filter with spurious response suppression," 2006 IEEE Annual Wireless and Microwave Technology Conference, 1-5, Clearwater Beach, FL, 2006.
doi:10.1109/LMWC.2010.2049481 Google Scholar
18. Deng, H. W., et al. "Compact quintuple-mode stub-loaded resonator and UWB filter," IEEE Microw. Wirel. Compon. Lett., Vol. 20, No. 8, 438-440, 2010.
doi:10.1109/LMWC.2013.2278278 Google Scholar
19. Zhu, H. and Q. X. Chu, "Compact ultra-wideband (UWB) bandpass filter using dual-stub-loaded resonator (DSLR)," IEEE Microw. Wirel. Compon. Lett., Vol. 23, No. 10, 527-529, 2013.
doi:10.1109/LMWC.2011.2160526 Google Scholar
20. Chu, Q. X., X. H. Wu, and X. K. Tian, "Novel UWB bandpass filter using stub-loaded multiple-mode resonator," IEEE Microw. Wirel. Compon. Lett., Vol. 21, No. 8, 403-405, 2011.
doi:10.1109/LMWC.2005.859011 Google Scholar
21. Zhu, L., S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microw. Wirel. Compon. Lett., Vol. 15, No. 11, 796-798, 2005.
doi:10.1109/LMWC.2012.2215845 Google Scholar
22. Wei, F., W. T. Li, X. W. Shi, and Q. L. Huang, "Compact UWB bandpass filter with triple-notched bands using triple-mode stepped impedance resonator," IEEE Microw. Wirel. Compon. Lett., Vol. 22, 512-514, 2012.
doi:10.1049/iet-map.2015.0495 Google Scholar
23. Wei, F., P.-Y. Qin, Y. J. Guo, and X.-W. Shi, "Design of multi-band bandpass filters based on stub loaded stepped-impedance resonator with defected microstrip structure," IET Microw. Antennas Propag., Vol. 10, 230-236, 2016.
doi:10.1109/TMTT.2015.2402152 Google Scholar
24. Lu, X., B. Wei, Z. Xu, B. Cao, X. Zhang, R. Wang, and F. Song, "Superconducting ultra-wideband (UWB) bandpass filter design based on quintuple/quadruple/triple-mode resonator," IEEE Trans. Microw. Theory Tech., Vol. 63, 1281-1293, 2015.
doi:10.1049/el.2013.2513 Google Scholar
25. Zhang, C., J. Zhang, and L. Li, "Triple band-notched UWB antenna based on SIR-DGS and fork-shaped stubs," Electron. Lett., Vol. 50, 67-69, 2014.
doi:10.1109/TMTT.2016.2607176 Google Scholar
26. Zhou, L.-H., Y. Ma, J. Shi, J. Chen, and W. Che, "Differential dual-band bandpass filter with tunable lower band using embedded DGS unit for common-mode suppression," IEEE Trans. Microw. Theory Tech., Vol. 64, 4183-4191, 2016. Google Scholar
27. Zakaria, Z., M. A. Mutalib, A. Ismail, M. S. M. Isa, M. M. Ismail, A. A. Latiff, N. A. Zainuddin, and W. Y. Sam, "Compact structure of band-pass filter integrated with Defected Microstrip Structure (DMS) for wideband applications," Proceedings of the European Conference on Antennas and Propagation, Vol. 21, 2158-2162, The Hague, The Netherlands, Apr. 6-11, 2014.
doi:10.1049/el.2013.3077 Google Scholar
28. Wang, J., J. Zhao, and J. L. Li, "Compact UWB bandpass filter with triple notched bands using parallel U-shaped defected microstrip structure," Electron. Lett., Vol. 50, 89-91, 2014.
doi:10.1002/mop.30069 Google Scholar
29. Deng, K. and W. Feng, "Wideband bandpass filter with multiple transmission zeros and compact size," Microw. Opt. Technol. Lett., Vol. 58, 2452-2455, 2016.
doi:10.2528/PIERL18042902 Google Scholar
30. Zhang, Z.-C. and H. Liu, "A ultra compact wideband bandpass filter using a quadmode stub-loaded resonator," Progress In Electromagnetics Research Letters, Vol. 77, 35-40, 2018. Google Scholar
31. Li, Y., W. W. Choi, K. W. Tam, and L. Zhu, "Novel wideband bandpass filter with dual notched bands using stub-loaded resonators," IEEE Microw. Wirel. Compon. Lett., Vol. 27, 25-27, 2017.
doi:10.3390/electronics8111316 Google Scholar
32. Weng, M.-H., C.-W. Hsu, S.-W. Lan, and R.-Y. Yang, "An ultra-wideband bandpass filter with a notch band and wide upper bandstop performances," Electronics, Vol. 8, No. 11, 1316, 2019. Google Scholar
33. Zheng, X. and T. Jiang, "Design of UWB bandpass filter with dual notched bands using E-shaped resonator," 2016 IEEE/ACES International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES), 1-2, IEEE, 2016.
doi:10.1515/freq-2019-0159 Google Scholar
34. Basit, A., M, and I. Khattak, "Designing modern compact microstrip planar quadband bandpass filter for hand held wireless applications," Frequenz, Vol. 74, No. 5-6, 219-227, Jan. 4, 2020.
doi:10.1007/s42452-019-1067-2 Google Scholar
35. Sami, A., M. U. Rahman, and S. Bashir, "Design of compact tri and quad band band-pass filters using stub loaded resonators for wireless applications," SN Applied Sciences, Vol. 1, No. 9, 1019, 2019.
doi:10.1109/ACCESS.2020.2989377 Google Scholar
36. Basit, A., M. I. Khattak, A. R. Sebak, A. B. Qazi, and A. A. Telba, "Design of a compact microstrip triple independently controlled pass bands filter for GSM, GPS and WiFi applications," IEEE Access, Vol. 8, 77156-77163, 2020, doi: 10.1109/ACCESS.2020.2989377. Google Scholar