Vol. 93
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-06-24
Design and Analysis of a Microstrip Planar UWB Bandpass Filter with Triple Notch Bands for WiMAX , WLAN, and X-Band Satellite Communication Systems
By
Progress In Electromagnetics Research M, Vol. 93, 155-164, 2020
Abstract
This manuscript presents a UWB filter with three notch bands for WiMAX, WLAN, and X-Band Satellite Communication by introducing inverted E- and T-shape resonators shorted at the center, designed and fabricated for the use of UWB applications authorized by the US Federal Communications Commission. First, a UWB filter ranges from 2.8 GHz to 10.6 GHz is designed by employing four λ/4 wavelength short-circuited stubs and then couples E- and T-shape resonators on either side of the main transmission line of the proposed UWB filter to achieve notch bands response centered at the resonance frequency of 3.3 GHz for WiMAX applications, 5.1 GHz for WLAN wireless applications, and 8.3 GHz for X-band satellite communication systems, respectively. The proposed filter is able to produce three individually control stopband frequencies centered at 3.3 GHz, 5.1 GHz, and 8.3 GHz with minimum attenuation levels of -28 dB, -19 dB, and -15 dB, respectively. This indicates that the presented filter can efficiently reject superfluous bands at 3.3 GHz in WiMAX system, 5.1 GHz in WLAN system, and 8.3 GHz in satellite communication systems to improve the performance of the UWB communication systems. Finally, the proposed filter with circuit area 34 mm × 12 mm × 0.762 mm between the simulated and fabricated measurements.
Citation
Abdul Basit, Muhammad Irfan Khattak, and Mu'ath Alhassan, "Design and Analysis of a Microstrip Planar UWB Bandpass Filter with Triple Notch Bands for WiMAX , WLAN, and X-Band Satellite Communication Systems," Progress In Electromagnetics Research M, Vol. 93, 155-164, 2020.
doi:10.2528/PIERM20042602
References

1. FCC "Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems,", Tech. Rep. ETDocket 98–153, FCC02-48, Federal Communications Commission, Apr. 2002.
doi:10.1163/156939303322235842

2. Chen, F. C. and W. C. Chew, "Time-domain ultra-wideband microwave imaging radar system," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 313-331, 2003.

3. George, T. and B. Lethakumary, "High frequency rejection using L shaped defected microstrip structure in ultra wideband bandpass filter," Materials Today: Proceedings, Vol. 25, Part 2, 265-268, Feb. 8, 2020.
doi:10.1093/ietele/e90-c.8.1652

4. Hung, C. Y., M. H. Weng, and Y. K. Su, "Design of compact and sharp rejection UWB BPFs using interdigital stepped-impedance resonators," IEICE Electron. Lett., Vol. 90, 1652-1654, 2007.

5. Chang, Y. C., C. H. Kao, M. H. Weng, and R. Y. Yang, "Design of the compact wideband bandpass filter with low loss, high selectivity and wide stopband," IEEE Microw. Wirel. Compon. Lett., Vol. 18, 187-189, 2008.
doi:10.1109/LMWC.2007.911972

6. Wong, S. W. and L. Zhu, "Implementation of compact UWB bandpass filter with a notch-band," IEEE Microw. Wirel. Compon. Lett., Vol. 18, 10-12, 2008.
doi:10.1109/LMWC.2013.2296291

7. Song, Y., G. M. Yang, and W. Geyi, "Compact UWB bandpass filter with dual notched bands using defected ground structures," IEEE Microw. Wirel. Compon. Lett., Vol. 24, 230-232, 2014.
doi:10.2528/PIERL18111302

8. Liu, J., W. Ding, J. Chen, and A. Zhang, "New ultra-wideband filter with sharp notched band using defected ground structure," Progress In Electromagnetics Research Letters, Vol. 83, 99-105, 2019.
doi:10.2528/PIERL17092503

9. Choudhary, D. K. and R. K. Chaudhary, "A compact via-less metamaterial wideband bandpass filter using split circular rings and rectangular stub," Progress In Electromagnetics Research Letters, Vol. 72, 99-106, 2018.
doi:10.2528/PIERL18121101

10. Ji, X.-C., W.-S. Ji, L.-Y. Feng, Y.-Y. Tong, and Z.-Y. Zhang, "Design of a novel multi-layer wideband bandpass filter with a notched band," Progress In Electromagnetics Research Letters, Vol. 82, 9-16, 2019.

11. Hsu, C. L., F. C. Hsu, and J. K. Kuo, "Microstrip bandpass filters for ultra-wideband (UWB) wireless communications," IEEE MTT-S International Microwave Symposium Digest, 4, 682, IEEE, 2005.
doi:10.1002/mop.22471

12. Yang, G. M., et al. "Design of ultra-wide band (UWB) bandpass filter based on defected ground structure," Microwave and Optical Technology Letters, Vol. 49, No. 6, 1374-1377, 2010.

13. Wu, C. H., et al. "A compact LTCC ultra-wideband bandpass filter using semi-lumped parallel-resonance circuits for spurious suppression," 2007 European Microwave Conference, 532-535, Munich, 2007.
doi:10.1002/mop.21133

14. Hong, J.-S. and H. Shaman, "An optimum ultra-wideband microstrip filter," Microwave and Optical Technology Letters, Vol. 47, No. 3, 230-233, 2010.

15. Wong, W. T., et al. "Highly selective microstrip bandpass filters for ultra-wideband (UWB) applications," 2005 Asia-Pacific Microwave Conference Proceedings, 4, IEEE, 2005.
doi:10.1109/LMWC.2006.890335

16. Shaman, H. and J. S. Hong, "A novel ultra-wideband (UWB) bandpass filter (BPF) with pairs of transmission zeroes," IEEE Microw. Wirel. Compon. Lett., Vol. 17, No. 2, 121-123, 2007.

17. Shaman, H. and J. S. Hong, "An optimum ultra-wideband (UWB) bandpass filter with spurious response suppression," 2006 IEEE Annual Wireless and Microwave Technology Conference, 1-5, Clearwater Beach, FL, 2006.
doi:10.1109/LMWC.2010.2049481

18. Deng, H. W., et al. "Compact quintuple-mode stub-loaded resonator and UWB filter," IEEE Microw. Wirel. Compon. Lett., Vol. 20, No. 8, 438-440, 2010.
doi:10.1109/LMWC.2013.2278278

19. Zhu, H. and Q. X. Chu, "Compact ultra-wideband (UWB) bandpass filter using dual-stub-loaded resonator (DSLR)," IEEE Microw. Wirel. Compon. Lett., Vol. 23, No. 10, 527-529, 2013.
doi:10.1109/LMWC.2011.2160526

20. Chu, Q. X., X. H. Wu, and X. K. Tian, "Novel UWB bandpass filter using stub-loaded multiple-mode resonator," IEEE Microw. Wirel. Compon. Lett., Vol. 21, No. 8, 403-405, 2011.
doi:10.1109/LMWC.2005.859011

21. Zhu, L., S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microw. Wirel. Compon. Lett., Vol. 15, No. 11, 796-798, 2005.
doi:10.1109/LMWC.2012.2215845

22. Wei, F., W. T. Li, X. W. Shi, and Q. L. Huang, "Compact UWB bandpass filter with triple-notched bands using triple-mode stepped impedance resonator," IEEE Microw. Wirel. Compon. Lett., Vol. 22, 512-514, 2012.
doi:10.1049/iet-map.2015.0495

23. Wei, F., P.-Y. Qin, Y. J. Guo, and X.-W. Shi, "Design of multi-band bandpass filters based on stub loaded stepped-impedance resonator with defected microstrip structure," IET Microw. Antennas Propag., Vol. 10, 230-236, 2016.
doi:10.1109/TMTT.2015.2402152

24. Lu, X., B. Wei, Z. Xu, B. Cao, X. Zhang, R. Wang, and F. Song, "Superconducting ultra-wideband (UWB) bandpass filter design based on quintuple/quadruple/triple-mode resonator," IEEE Trans. Microw. Theory Tech., Vol. 63, 1281-1293, 2015.
doi:10.1049/el.2013.2513

25. Zhang, C., J. Zhang, and L. Li, "Triple band-notched UWB antenna based on SIR-DGS and fork-shaped stubs," Electron. Lett., Vol. 50, 67-69, 2014.
doi:10.1109/TMTT.2016.2607176

26. Zhou, L.-H., Y. Ma, J. Shi, J. Chen, and W. Che, "Differential dual-band bandpass filter with tunable lower band using embedded DGS unit for common-mode suppression," IEEE Trans. Microw. Theory Tech., Vol. 64, 4183-4191, 2016.

27. Zakaria, Z., M. A. Mutalib, A. Ismail, M. S. M. Isa, M. M. Ismail, A. A. Latiff, N. A. Zainuddin, and W. Y. Sam, "Compact structure of band-pass filter integrated with Defected Microstrip Structure (DMS) for wideband applications," Proceedings of the European Conference on Antennas and Propagation, Vol. 21, 2158-2162, The Hague, The Netherlands, Apr. 6-11, 2014.
doi:10.1049/el.2013.3077

28. Wang, J., J. Zhao, and J. L. Li, "Compact UWB bandpass filter with triple notched bands using parallel U-shaped defected microstrip structure," Electron. Lett., Vol. 50, 89-91, 2014.
doi:10.1002/mop.30069

29. Deng, K. and W. Feng, "Wideband bandpass filter with multiple transmission zeros and compact size," Microw. Opt. Technol. Lett., Vol. 58, 2452-2455, 2016.
doi:10.2528/PIERL18042902

30. Zhang, Z.-C. and H. Liu, "A ultra compact wideband bandpass filter using a quadmode stub-loaded resonator," Progress In Electromagnetics Research Letters, Vol. 77, 35-40, 2018.

31. Li, Y., W. W. Choi, K. W. Tam, and L. Zhu, "Novel wideband bandpass filter with dual notched bands using stub-loaded resonators," IEEE Microw. Wirel. Compon. Lett., Vol. 27, 25-27, 2017.
doi:10.3390/electronics8111316

32. Weng, M.-H., C.-W. Hsu, S.-W. Lan, and R.-Y. Yang, "An ultra-wideband bandpass filter with a notch band and wide upper bandstop performances," Electronics, Vol. 8, No. 11, 1316, 2019.

33. Zheng, X. and T. Jiang, "Design of UWB bandpass filter with dual notched bands using E-shaped resonator," 2016 IEEE/ACES International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES), 1-2, IEEE, 2016.
doi:10.1515/freq-2019-0159

34. Basit, A., M, and I. Khattak, "Designing modern compact microstrip planar quadband bandpass filter for hand held wireless applications," Frequenz, Vol. 74, No. 5-6, 219-227, Jan. 4, 2020.
doi:10.1007/s42452-019-1067-2

35. Sami, A., M. U. Rahman, and S. Bashir, "Design of compact tri and quad band band-pass filters using stub loaded resonators for wireless applications," SN Applied Sciences, Vol. 1, No. 9, 1019, 2019.
doi:10.1109/ACCESS.2020.2989377

36. Basit, A., M. I. Khattak, A. R. Sebak, A. B. Qazi, and A. A. Telba, "Design of a compact microstrip triple independently controlled pass bands filter for GSM, GPS and WiFi applications," IEEE Access, Vol. 8, 77156-77163, 2020, doi: 10.1109/ACCESS.2020.2989377.