Vol. 95
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-08-23
Pentagonal Shaped UWB Antenna Loaded with Slot and EBG Structure for Dual Band Notched Response
By
Progress In Electromagnetics Research M, Vol. 95, 165-176, 2020
Abstract
In this paper, a planar, compact, and low cost printed microstrip line fed pentagon-shaped ultra-wideband antenna offering dual band notched characteristics response is proposed and investigated. By introducing modified V-shaped slots in the pentagonal patch and hexagonal electromagnetic band gap structures near the feedline, dual band notched response can be realized. The proposed antenna is successfully simulated, designed, and fabricated on an FR-4 substrate. The measured results show that the proposed antenna having dimensions of 35 × 33 × 1.6 mm3 has a bandwidth over the frequency band 2.7-10.6 GHz with magnitude of S11 ≤ -10 dB (VSWR ≤ 2), except 3.7-4.6 GHz (C-band Satellite Communication) and 5.16-6.08 GHz (WLAN) frequency bands. The presented antennas show small group delay variation, nearly omnidirectional radiation pattern and stable gain at working frequencies. Satisfactory results have been obtained in frequency and time-domain analysis of the proposed antenna. The formulation of the center frequency of dual notched frequency band is also proposed.
Citation
Ameya A. Kadam, and Amit A. Deshmukh, "Pentagonal Shaped UWB Antenna Loaded with Slot and EBG Structure for Dual Band Notched Response," Progress In Electromagnetics Research M, Vol. 95, 165-176, 2020.
doi:10.2528/PIERM20042801
References

1. First Report and Order, , Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems, Federal Communications Commission, FCC 02-48, 2002.

2. Kumar, G. and K. P. Ray, Broadband Microstrip Antenna, Artech House, USA, 2003.

3. Garg, B. P., I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.

4. Ray, K. P., "Design aspects of printed monopole antennas for ultra-wide band applications," Int. J. Antennas Propag., Vol. 2008, 1-8, 2008.
doi:10.1155/2008/713858        Google Scholar

5. Agrawall, N. P., G. Kumar, and K. P. Ray, "Wide-band planar monopole antennas," IEEE Trans. Antennas Propag., Vol. 46, No. 2, 294-295, 1998.
doi:10.1109/8.660976        Google Scholar

6. Wong, K. L. and Stripline-fed printed triangular monopole, "Stripline-fed printed triangular monopole," Electron. Lett., Vol. 33, No. 17, 1428-1429, 1997.
doi:10.1049/el:19970960        Google Scholar

7. Jose, J. V., A. S. Rekh, and M. J. Jose, "Double-elliptical shaped miniaturized micro strip patch antenna for ultra-wide band applications," Progress In Electromagnetics Research C, Vol. 97, 95-107, 2019.
doi:10.2528/PIERC19092002        Google Scholar

8. Ray, K. P., S. S. Thakur, and R. A. Deshmukh, "UWB printed sectoral monopole antenna with dual polarization," Microw. Opt. Technol. Lett., Vol. 54, No. 9, 2066-2070, 2012.
doi:10.1002/mop.27039        Google Scholar

9. Thomas, P., D. D. Krishna, M. Gopikrishna, U. G. Kalappura, and C. K. Aanandan, "Compact planar ultra-wideband bevelled monopole for portable UWB systems," Electron. Lett., Vol. 47, No. 20, 1112-1114, 2011.
doi:10.1049/el.2011.2285        Google Scholar

10. Mewara, H. S., J. K. Deegwal, and M. M. Sharma, "A slot resonators based quintuple band-notched Y-shaped planar monopole ultra-wideband antenna," AEU — Int. J. Electron. Commun., Vol. 83, 470-478, 2018.
doi:10.1016/j.aeue.2017.10.035        Google Scholar

11. Zhu, Y., F.-S. Zhang, C. Lin, Q. Zhang, and J.-X. Huang, "A novel dual band-notched monopole antenna for ultra-wideband application," Progress In Electromagnetics Research Letters, Vol. 16, 109-117, 2010.
doi:10.2528/PIERL10032901        Google Scholar

12. Deshmukh, A. A. and P. V. Mohadikar, "Modified rectangular shape patch antennas for ultra-wide band and notch characteristics response," Microw. Opt. Technol. Lett., Vol. 59, No. 7, 1524-1529, 2017.
doi:10.1002/mop.30576        Google Scholar

13. Guichi, F., M. Challal, and T. A. Denidni, "A novel dual band-notch ultra-wideband monopole antenna using parasitic stubs and slot," Microw. Opt. Technol. Lett., Vol. 60, No. 7, 1737-1744, 2018.
doi:10.1002/mop.31231        Google Scholar

14. Haraz Ahmed, O. M. and A. R. Sebak, "Numerical and experimental investigation of a novel ultrawideband butterfly shaped printed monopole antenna with bandstop function," Progress In Electromagnetics Research C, Vol. 18, 111-121, 2011.
doi:10.2528/PIERC10102906        Google Scholar

15. Abbosh, A. M., "Design of a CPW-fed band-notched UWB antenna using a feeder-embedded slotline resonator," Int. J. Antennas Propag., Vol. 2008, 1-5, 2008.        Google Scholar

16. Wang, C., Z.-H. Yan, B. Li, and P. Xu, "A dual band-notched UWB printed antenna with C-shaped and U-shaped slots," Microw. Opt. Technol. Lett., Vol. 54, No. 6, 1450-1452, 2012.
doi:10.1002/mop.26807        Google Scholar

17. Mishra, S. K. and J. Mukherjee, "Compact printed dual band-notched U-shape UWB antenna," Progress In Electromagnetics Research C, Vol. 27, 169-181, 2012.
doi:10.2528/PIERC12010909        Google Scholar

18. Yadav, A., S. Agrawal, and R. P. Yadav, "SRR and S-shape slot loaded triple band notched UWB antenna," AEU — Int. J. Electron. Commun., Vol. 79, 192-198, 2017.
doi:10.1016/j.aeue.2017.06.003        Google Scholar

19. Lv, Y., J. Zhang, and H. Hou, "A novel triple band-notched UWB printed monopole antenna," Progress In Electromagnetics Research M, Vol. 81, 85-95, 2019.
doi:10.2528/PIERM19022201        Google Scholar

20. Jaglan, N., B. K. Kanaujia, S. D. Gupta, and S. Srivastava, "Triple band notched UWB antenna design using electromagnetic band gap structures," Progress In Electromagnetics Research C, Vol. 66, 139-147, 2016.
doi:10.2528/PIERC16052304        Google Scholar

21. Mandal, T. and S. Das, "Design of dual notch band UWB printed monopole antenna using electromagnetic-bandgap structure," Microw. Opt. Technol. Lett., Vol. 56, No. 9, 2195-2199, 2014.
doi:10.1002/mop.28526        Google Scholar

22. Choukiker, Y. K. and S. K. Behera, "Modified Sierpinski square fractal antenna covering ultrawide band application with band notch characteristics," IET Microwaves, Antennas Propag., Vol. 8, No. 7, 506-512, 2014.
doi:10.1049/iet-map.2013.0235        Google Scholar

23. Ghahremani, M., C. Ghobadi, J. Nourinia, M. S. Ellis, F. Alizadeh, and B. Mohammadi, "Miniaturised UWB antenna with dual-band rejection of WLAN/WiMAX using slitted EBG structure," IET Microwaves, Antennas Propag., Vol. 13, No. 3, 360-366, 2019.
doi:10.1049/iet-map.2018.5674        Google Scholar

24. Tsai, L. C., "A ultrawideband antenna with dual-band band-notch filters," Microw. Opt. Technol. Lett., Vol. 59, No. 8, 1861-1866, 2017.
doi:10.1002/mop.30639        Google Scholar

25. Mansouri, Z., F. B. Zarrabi, and A. Saee Arezoomand, "Multi notch-band CPW-fed circular-disk UWB antenna using underground filter," Int. J. Electron. Lett., Vol. 6, No. 2, 204-213, 2018.
doi:10.1080/21681724.2017.1335786        Google Scholar

26. Denidni, T. A. and Z. Weng, "Hybrid ultrawideband dielectric resonator antenna and band-notched designs," IET Microwaves, Antennas Propag., Vol. 5, No. 4, 450-458, 2011.
doi:10.1049/iet-map.2009.0425        Google Scholar

27. Zhu, F., et al., "Dual band-notched tapered slot antenna using λ/4 band-stop filters," IET Microwaves, Antennas Propag., Vol. 6, No. 15, 1665-1673, 2012.
doi:10.1049/iet-map.2012.0502        Google Scholar

28. Fertas, K., F. Ghanem, A. Azrar, and R. Aksas, "UWB antenna with sweeping dual notch based on metamaterial SRR fictive rotation," Microw. Opt. Technol. Lett., Vol. 62, No. 2, 956-963, 2020.
doi:10.1002/mop.32111        Google Scholar

29. Zhang, J., T. Chen, L. Hua, and W. Wang, "A compact differential-fed UWB antenna with band-notched characteristics," Progress In Electromagnetics Research M, Vol. 83, 171-179, 2019.
doi:10.2528/PIERM19060607        Google Scholar

30. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10 II, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983        Google Scholar

31. Deshmukh, A. A., P. Mohadikar, and S. Pawar, "Formulation of resonant length for regular and modified shapes printed monopole antennas," Int. J. Microw. Opt. Technol., Vol. 13, No. 6, 478-486, 2018.        Google Scholar