Vol. 95
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-07-29
Slotted Spherical Antenna with a Multi-Element Diaphragm in the Waveguide
By
Progress In Electromagnetics Research M, Vol. 95, 1-12, 2020
Abstract
A problem of electromagnetic wave radiation by narrow slots cut in an end wall of a semi-infinite waveguide section into space above a perfectly conducting sphere is solved in a strict self-consistent formulation by the generalized method of induced magnetomotive forces (MMF). Inside the waveguide section, a reentrant cavity formed by the volume between a slotted diaphragm and the waveguide end wall is located. The waveguide is operating in the frequency range of a single-mode regime. The electrodynamic characteristics of this radiating system with the spherical screen of resonant dimensions are investigated numerically and ex-perimentally. The possibility to develop the spherical antennas with a narrow-band frequency, energy, and spatial characteristics is substantiated.
Citation
Sergey L. Berdnik, Victor A. Katrich, Victor I. Kijko, Mikhail Nesterenko, and Yuriy M. Penkin, "Slotted Spherical Antenna with a Multi-Element Diaphragm in the Waveguide," Progress In Electromagnetics Research M, Vol. 95, 1-12, 2020.
doi:10.2528/PIERM20050806
References

1. Lewin, L., Advanced Theory of Waveguides, Iliffe & Sons, London, 1951.

2. Mittra, R., Computer Techniques for Electromagnetics, Pergamon Press, NY, 1973.

3. Reznikov, G. B., Antennas of Flying Vehicles, Soviet Radio, Moscow, 1967 (in Russian).

4. Schantz, H., "Nanoantennas: A concept for efficient electrically small UWB devices," IEEE International Conference ICU 2005, 264-268, Sept. 2005.

5. Vorst, A. V., A. Rosen, and Yu. Kotsuka, RF/Microwave Interaction with Biological Tissues, Willey-IEEE Press, NY, 2006.

6. Mushiake, Y. and R. E. Webster, "Radiation characteristics with power gain for slots on a sphere," IRE Trans. Antennas Propagat., Vol. 5, 47-55, 1957.
doi:10.1109/TAP.1957.1144465

7. Leung, K. W., "Theory and experiment of a rectangular slot on a sphere," IEEE Trans. Microwave Theory Tech., Vol. 46, 2117-2123, 1998.
doi:10.1109/22.739292

8. Kwok, W. L., "Rectangular and zonal slots on a sphere with a backing shell: Theory and experiment," IEEE Trans. Antennas Propagat., Vol. 51, 1434-1442, 2003.
doi:10.1109/TAP.2003.813639

9. Berdnik, S. L., Yu. M. Penkin, V. A. Katrich, M. V. Nesterenko, and V. I. Kijko, "Electromagnetic waves radiation into the space over a sphere by a slot in the end-wall of a semi-infinite rectangular waveguide," Progress In Electromagnetics Research B, Vol. 46, 139-158, 2013.
doi:10.2528/PIERB12102203

10. Berdnik, S. L., V. A. Katrich, M. V. Nesterenko, and Yu. M. Penkin, "Spherical antenna excited by a slot in an impedance end-wall of a rectangular waveguide," Proc. of the XVIII-th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, 111-114, Lviv, Ukraine, 2013.

11. Berdnik, S. L., V. A. Katrich, Yu. M. Penkin, M. V. Nesterenko, and S. V. Pshenichnaya, "Energy characteristics of a slot cut in an impedance end-wall of a rectangular and radiating into the space over a perfectly conducting sphere," Progress In Electromagnetics Research M, Vol. 34, 89-97, 2014.
doi:10.2528/PIERM13112006

12. Berdnik, S. L., V. S. Vasylkovskyi, M. V. Nesterenko, and Yu. M. Penkin, "Radiation fields of the spherical slot antenna in a material medium," Proc. of the X-th Anniversary International Conference on Antenna Theory and Techniques, Kharkiv, Ukraine, 282–284, 2015.

13. Nesterenko, M. V., V. A. Katrich, Yu. M. Penkin, and S. L. Berdnik, Analytical and Hybrid Methods in Theory of Slot-Hole Coupling of Electrodynamic Volumes, Springer Science+Business Media, New York, 2008.
doi:10.1007/978-0-387-76362-0

14. Long, S. A., "Experimental study of the impedance of cavity-backed slot antennas," IEEE Trans. Antennas Propag., Vol. 23, 1-7, 1975.
doi:10.1109/TAP.1975.1140998

15. Lee, J. Y., T. Sh. Horng, and N. G. Alexopoulos, "Analysis of cavity-backed aperture antennas with a dielectric overlay," IEEE Trans. Antennas Propag., Vol. 42, 1556-1562, 1994.
doi:10.1109/8.299575

16. Nesterenko, M. V. and V. A. Katrich, "The method of induced magnetomotive forces for cavity-backed slot radiators and coupling slots," Radioelectronics and Communications Systems, Vol. 47, 8-13, 2004.

17. Mittra, R. and S. W. Lee, Analytical Techniques in the Theory of Guided Waves, Collier-Macmillan Limited, London, 1971.