Vol. 99
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-12-10
Homogenization of Metal Grid Reinforced Composites for Near-Field Low Frequency Magnetic Shielding
By
Progress In Electromagnetics Research M, Vol. 99, 153-163, 2021
Abstract
The purpose of this paper is to provide simple analytical homogenization methods for composite materials containing a metallic wire grid. Estimating their effective electrical properties facilitates the numerical simulation of composite structures for shielding applications in the automotive industry. The presented methods are based on surface impedance approaches and effective media theory. The obtained results show that the shielding properties of the described wire grid composites can be accurately estimated and bounded, using the proposed theories in the low frequency range. The frequency limits vary according to the studied sample. For the presented materials, the validity of the results is shown to be up to a few megahertz. The experimental validation is done by measuring the shielding effectiveness of composite samples using a near-field test bench.
Citation
Ghida Al Achkar, Lionel Pichon, Mohamed Bensetti, and Laurent Daniel, "Homogenization of Metal Grid Reinforced Composites for Near-Field Low Frequency Magnetic Shielding," Progress In Electromagnetics Research M, Vol. 99, 153-163, 2021.
doi:10.2528/PIERM20052402
References

1. El Feddi, M., Z. Ren, A. Razek, and A. Bossavit, "Homogenization technique for Maxwell equations in periodic structures," IEEE Transactions on Magnetics, Vol. 33, 1382-1385, Mar. 1997.
doi:10.1109/20.582514

2. Senghor, F. D., G. Wasselynck, H. K. Bui, S. Branchu, D. Trichet, and G. Berthiau, "Electrical conductivity tensor modeling of stratified woven-fabric carbon fiber reinforced polymer composite materials," IEEE Transactions on Magnetics, Vol. 53, 1-4, Jun. 2017.
doi:10.1109/TMAG.2017.2660529

3. Sutthaweekul, R., A. M. J. Marindra, and G. Y. Tian, "Study of microwave responses on layered woven CFRP composites," 2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE), 1-5, Oct. 2017.

4. Al Achkar, G., L. Pichon, L. Daniel, and N. Benjelloun, "Effective electromagnetic properties of woven fiber composites for shielding applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 4, 1082-1089, Aug. 2020.
doi:10.1109/TEMC.2019.2931764

5. Lovat, G., "Near-field shielding effectiveness of 1-D periodic planar screens with 2-D near-field sources," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 3, 708-719, 2009.
doi:10.1109/TEMC.2009.2022273

6. Araneo, R., G. Lovat, and S. Celozzi, "Shielding effectiveness of periodic screens against finite high-impedance near-field sources," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 3, 706-716, 2011.
doi:10.1109/TEMC.2010.2081367

7. Benhamou, S., M. Hamouni, and S. Khaldi, "Theoretical approach of electromagnetic shielding of multilayer conductive sheets," Progress In Electromagnetics Research M, Vol. 41, 167-175, 2015.
doi:10.2528/PIERM15020101

8. Casey, K. F., "Electromagnetic shielding behavior of wire-mesh screens," IEEE Transactions on Electromagnetic Compatibility, Vol. 30, 298-306, Aug. 1988.
doi:10.1109/15.3309

9. Sarto, M. S. and C. L. Holloway, "Effective boundary conditions for the time-domain analysis of the EMC performances of fiber composites," 1999 IEEE International Symposium on Electromagnetic Compatability. Symposium Record (Cat. No. 99CH36261), Vol. 1, 462-467, Aug. 1999.
doi:10.1109/ISEMC.1999.812948

10. Sarto, M. S., S. Greco, and A. Tamburrano, "Shielding effectiveness of protective metallic wire meshes: EM modeling and validation," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, 615-621, Jun. 2014.
doi:10.1109/TEMC.2013.2292715

11. Liang, R., W. Cheng, H. Xiao, M. Shi, Z. Tang, and N. Wang, "A calculating method for the electromagnetic shielding effectiveness of metal fiber blended fabric," Textile Research Journal, Vol. 88, No. 9, 973-986, 2018.
doi:10.1177/0040517517693980

12. Liu, Y. and J. Tan, "Frequency dependent model of sheet resistance and effect analysis on shielding effectiveness of transparent conductive mesh coatings," Progress In Electromagnetics Research, Vol. 140, 353-368, 2013.
doi:10.2528/PIER13050312

13. Hashin, Z. and S. Shtrikman, "A variational approach to the theory of the effective magnetic permeability of multiphase materials," Journal of Applied Physics, Vol. 33, 3125-3131, Oct. 1962.

14. Hashin, Z. and S. Shtrikman, "A variational approach to the theory of the elastic behaviour of multiphase materials," Journal of the Mechanics and Physics of Solids, Vol. 11, No. 2, 127-140, 1963.
doi:10.1016/0022-5096(63)90060-7

15. Sihvola, A., Electromagnetic Mixing Formulas and Applications, Electromagnetics and Radar Series, Institution of Electrical Engineers, 1999.
doi:10.1049/PBEW047E

16. Bal, K. and V. Kothari, "Permittivity of woven fabrics: A comparison of dielectric formulas for air-fiber mixture," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 17, 881-889, Jun. 2010.
doi:10.1109/TDEI.2010.5492262

17. Holloway, C., M. Sarto, and M. Johansson, "Analyzing carbon-fiber composite materials with equivalent-layer models," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, 833-844, Nov. 2005.

18. Koledintseva, M. Y., R. E. DuBroff, and R. W. Schwartz, "A Maxwell Garnett model for dielectric mixtures containing conducting particles at optical frequencies," Progress In Electromagnetics Research, Vol. 63, 223-242, 2006.
doi:10.2528/PIER06052601

19. Andrieu, G., J. Panh, A. Reineix, P. Pelissou, C. Girard, X. Romeuf, and D. Schmitt, "Homogenization of composite panels from a near-field magnetic shielding effectiveness measurement," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, 700-703, Jun. 2012.
doi:10.1109/TEMC.2012.2186455

20. Greco, S., A. Tamburrano, A. D’Aloia, R. Mufatti, and M. S. Sarto, "Shielding effectiveness properties of carbon-fiber reinforced composite for HIRF applications," International Symposium on Electromagnetic Compatibility — EMC EUROPE, 1-6, Sep. 2012.

21. Yatsenko, V. V., S. A. Tretyakov, S. I. Maslovski, and A. A. Sochava, "Higher order impedance boundary conditions for sparse wire grids," IEEE Transactions on Antennas and Propagation, Vol. 48, 720-727, May 2000.
doi:10.1109/8.855490

22. Awan, Z. A., "Surface impedance properties of a wire grid embedded in a chiral medium," International Journal of Microwave and Wireless Technologies, Vol. 12, No. 1, 58-65, 2020.
doi:10.1017/S1759078719000953

23. Karkkainen, K. K., A. H. Sihvola, and K. I. Nikoskinen, "Effective permittivity of mixtures: Numerical validation by the FDTD method," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, 1303-1308, May 2000.
doi:10.1109/36.843023

24. Robinson, M. P., T. M. Benson, C. Christopoulos, J. F. Dawson, M. D. Ganley, A. C. Marvin, S. J. Porter, and D. W. P. Thomas, "Analytical formulation for the shielding effectiveness of enclosures with apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, No. 3, 240-248, 1998.
doi:10.1109/15.709422

25. Fang, C.-H., S. Zheng, H. Tan, D. Xie, and Q. Zhang, "Shielding effectiveness measurements on enclosures with various apertures by both mode-tuned reverberation chamber and GTEM cell methodologies," Progress In Electromagnetics Research B, Vol. 2, 103-114, 2008.

26. Harid, V., M. Golkowski, S. D. Gedney, M. B. Cohen, S. K. Patch, R. A. L. Rorrer, C. M. Renick, J. Bittle, N. M. Opalinski, and H. Y. Kim, "Magnetic field penetration into a metal enclosure using an ELF/VLF loop antenna," IEEE Transactions on Electromagnetic Compatibility, 1-12, 2019.

27. Benyoubi, F., L. Pichon, M. Bensetti, Y. Le Bihan, and M. Feliachi, "An efficient method for modeling the magnetic field emissions of power electronic equipment from magnetic near field measurements," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, 609-617, Apr. 2017.
doi:10.1109/TEMC.2016.2643167

28. Benyoubi, F., M. Feliachi, M. Bensetti, Y. Le Bihan, and L. Pichon, "Fast evaluation of low frequency near field magnetic shielding effectiveness," 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC), 350-354, May 2018.
doi:10.1109/ISEMC.2018.8393796

29. Moser, J. R., "Low-frequency shielding of a circular loop electromagnetic field source," IEEE Transactions on Electromagnetic Compatibility, Vol. 9, 6-18, Mar. 1967.
doi:10.1109/TEMC.1967.4307447

30. Celozzi, S., R. Araneo, and G. Lovat, Electromagnetic Shielding, John Wiley & Sons, Ltd., 2008.
doi:10.1002/9780470268483

31. Geuzaine, C. and J.-F. Remacle, "GMSH: A 3-D finite element mesh generator with built-in preand post-processing facilities," International Journal for Numerical Methods in Engineering, Vol. 79, 1309-1331, 2009.
doi:10.1002/nme.2579

32. Dular, P., C. Geuzaine, F. Henrotte, and W. Legros, "A general environment for the treatment of discrete problems and its application to the finite element method," IEEE Transactions on Magnetics, Vol. 34, 3395-3398, Sept. 1998.
doi:10.1109/20.717799