Vol. 95
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-08-25
Application Analysis of Similarity Principle in the Design of the Underwater Receiving Antenna
By
Progress In Electromagnetics Research M, Vol. 95, 189-197, 2020
Abstract
In order to reduce the cost and blindness of antenna design, the application of electromagnetic field similarity principle in the working environment of underwater receiving antenna was studied and verified. The field distribution and electrical parameters of the underwater receiving antenna and its reduced-scale model were calculated and proved to be in accordance with the similarity principle. The simulation analysis of the receiving antenna and its reduced-scale model for receiving the airborne electromagnetic wave signal in the seawater shows that the underwater receiving antennas before and after the scale-down are similar. The simulation is verified by measuring the receiving signal amplitude of the underwater receiving antenna and its reduced-scale model. The results of theoretical derivation and simulation analysis show that the electromagnetic field similarity principle can be applied to the underwater receiving antenna system.
Citation
Shiyu Wang, Lihua Li, Yalun Zhang, and Yongbin Wang, "Application Analysis of Similarity Principle in the Design of the Underwater Receiving Antenna," Progress In Electromagnetics Research M, Vol. 95, 189-197, 2020.
doi:10.2528/PIERM20052602
References

1. Yang, K. and D. Du, "Research on the development of foreign submarine communication technology," Ship Science and Technology, Vol. 40, No. 3, 153-157, 2018.

2. Qi, W., Z. Wang, W. Ma, and Y. Yang, "Verification and analysis on similitude principle used in the compact model of a reverberation chamber," Journal of Radio Science, Vol. 26, No. 1, 180-185, 2011.

3. Chen, K., Electromagnetic Field and Electromagnetic Wave, Higher Education Press, Beijing, 2003.

4. Gong, Y., Q. Zhai, and C. Li, "Research on parameter conversion relation between antenna system and its reduced-scale model," Radio Communication Technology, Vol. 42, No. 6, 70-72+94, 2016.

5. Jiao, Y., "Analysis and research of electromagnetic properties of seawater," Naval Electronic Engineering, Vol. 38, No. 8, 176-179, 2018.

6. Jeon, J. Y., H. I. Jo, R. Seo, and K. H. Kwak, "Objective and subjective assessment of sound diffuseness in musical venues via computer simulations and a scale model,", 173, Elsevier Ltd, 2020.

7. Wang, H., "Study on electromagnetic wave propagation across seawater to air interface,", Northwest University of Technology, 2015.

8. Chen, G., "1978 practical salt standard and China standard seawater," Marine Technology, No. 3, 2223, 1982.

9. Lu, W., Antenna Theory and Technology, Xidian University Press, Xi'an, 2004.