1. Mie, G., "Beitrage zur optik truber medien, speziell kolloidaler metallosungen," Annalen der Physik, Vol. 330, No. 3, 377-445, 1908.
doi:10.1002/andp.19083300302 Google Scholar
2. Yoon, T.-J., K. N. Yu, E. Kim, J. S. Kim, B. G. Kim, S.-H. Yun, B.-H. Sohn, M.-H. Cho, J.- K. Lee, and S. B. Park, "Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials," Small, Vol. 2, No. 2, 209-215, 2006.
doi:10.1002/smll.200500360 Google Scholar
3. Chen, G., J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Agren, P. N. Prasad, et al. "(α-naybf4: Tm3+)/caf2 core/shell nanoparticles with efficient nearinfrared to near-infrared upconversion for high-contrast deep tissue bioimaging," ACS Nano, Vol. 6, No. 9, 8280-8287, 2012.
doi:10.1021/nn302972r Google Scholar
4. Feng, H. Y., F. Luo, D. Meneses-Rodrıguez, G. Armelles, and A. Cebollada, "From disk to ring: Aspect ratio control of the magnetoplasmonic response in Au/Co/Au nanostructures fabricated by hole-mask colloidal lithography," Applied Physics Letters, Vol. 106, No. 8, 083105, 2015.
doi:10.1063/1.4913621 Google Scholar
5. Zayats, A. V. and I. I. Smolyaninov, "Near-field photonics: Surface plasmon polaritons and localized surface plasmons," Journal of Optics A: Pure and Applied Optics, Vol. 5, No. 4, S16, 2003.
doi:10.1088/1464-4258/5/4/353 Google Scholar
6. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, 1-11, World Scientific, 2011. Google Scholar
7. Anker, J. N., W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, "Biosensing with plasmonic nanosensors," Nanoscience and Technology: A Collection of Reviews from Nature Journals, 308-319, World Scientific, 2010. Google Scholar
8. Pande, S., S. K. Ghosh, S. Praharaj, S. Panigrahi, S. Basu, S. Jana, A. Pal, T. Tsukuda, and T. Pal, "Synthesis of normal and inverted gold-silver coreshell architectures in β-cyclodextrin and their applications in sers," The Journal of Physical Chemistry C, Vol. 111, No. 29, 10806-10813, 2007.
doi:10.1021/jp0702393 Google Scholar
9. Kim, J., H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon, and T. Hyeon, "Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery," Angewandte Chemie International Edition, Vol. 47, No. 44, 8438-8441, 2008.
doi:10.1002/anie.200802469 Google Scholar
10. Lee, K.-S. and M. A. El-Sayed, "Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition," The Journal of Physical Chemistry B, Vol. 110, No. 39, 19220-19225, 2006.
doi:10.1021/jp062536y Google Scholar
11. Liedberg, B., C. Nylander, and I. Lunstrom, "Surface plasmon resonance for gas detection and biosensing," Sensors and Actuators, Vol. 4, 299-304, 1983.
doi:10.1016/0250-6874(83)85036-7 Google Scholar
12. Verbruggen, S. W., M. Keulemans, J. A. Martens, and S. Lenaerts, "Predicting the surface plasmon resonance wavelength of gold-silver alloy nanoparticles," The Journal of Physical Chemistry C, Vol. 117, No. 37, 19142-19145, 2013.
doi:10.1021/jp4070856 Google Scholar
13. Ali, A., Q. A. Naqvi, and M. A. Baqir, "Investigation of the plasmon resonance of core-shell nanoparticle in the near-infrared region," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 18, 2462-2475, 2019.
doi:10.1080/09205071.2019.1685008 Google Scholar
14. Mohapatra, S., Y. Mishra, D. Avasthi, D. Kabiraj, J. Ghatak, and S. Varma, "Synthesis of goldsilicon core-shell nanoparticles with tunable localized surface plasmon resonance," Applied Physics Letters, Vol. 92, No. 10, 103105, 2008.
doi:10.1063/1.2894187 Google Scholar
15. Gerislioglu, B., A. Ahmadivand, and N. Pala, Optothermally controlled charge transfer plasmons in Au-Ge2Sb2Te5 core-shell assemblies, arXiv preprint arXiv:1712.01092, 2017.
16. Sukhorukov, V. L., G. Meedt, M. Kurschner, and U. Zimmermann, "A single-shell model for biological cells extended to account for the dielectric anisotropy of the plasma membrane," Journal of Electrostatics, Vol. 50, No. 3, 191-204, 2001.
doi:10.1016/S0304-3886(00)00037-1 Google Scholar
17. Ambjornsson, T., G. Mukhopadhyay, S. P. Apell, and M. Kall, "Resonant coupling between localized plasmons and anisotropic molecular coatings in ellipsoidal metal nanoparticles," Physical Review B, Vol. 73, No. 8, 085412, 2006.
doi:10.1103/PhysRevB.73.085412 Google Scholar
18. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907 Google Scholar
19. Gao, L., T. Fung, K. Yu, and C. Qiu, "Electromagnetic transparency by coated spheres with radial anisotropy," Physical Review E, Vol. 78, No. 4, 046609, 2008.
doi:10.1103/PhysRevE.78.046609 Google Scholar
20. Ni, Y., L. Gao, A. Miroshnichenko, and C. Qiu, "Controlling light scattering and polarization by spherical particles with radial anisotropy," Optics Express, Vol. 21, No. 7, 8091-8100, 2013.
doi:10.1364/OE.21.008091 Google Scholar
21. Nisar, M. and Q. A. Naqvi, "Cloaking and magnifying using radial anisotropy in non-integer dimensional space," Physics Letters A, Vol. 382, No. 31, 2055-2060, 2018.
doi:10.1016/j.physleta.2018.05.018 Google Scholar
22. Wallen, H., H. Kettunen, and A. Sihvola, "Anomalous absorption, plasmonic resonances, and invisibility of radially anisotropic spheres," Radio Science, Vol. 50, No. 1, 18-28, 2015.
doi:10.1002/2014RS005534 Google Scholar
23. Kettunen, H., H. Wallen, and A. Sihvola, "Cloaking and magnifying using radial anisotropy," Journal of Applied Physics, Vol. 114, No. 4, 044110, 2013.
doi:10.1063/1.4816797 Google Scholar
24. Liu, H.-Z., J. L.-W. Li, M. S. Leong, and S. Zouhdi, "Transparent uniaxial anisotropic spherical particles designed using radial anisotropy," Physical Review E, Vol. 84, No. 1, 016605, 2011.
doi:10.1103/PhysRevE.84.016605 Google Scholar
25. Chen, H. and L. Gao, "Tunablity of the unconventional fano resonances in coated nanowires with radial anisotropy," Optics Express, Vol. 21, No. 20, 23619-23630, 2013.
doi:10.1364/OE.21.023619 Google Scholar
26. Reshetnyak, V. Y., I. P. Pinkevych, T. J. Sluckin, and D. R. Evans, "Cloaking by shells with radially inhomogeneous anisotropic permittivity," Optics Express, Vol. 24, No. 2, A21-A32, 2016.
doi:10.1364/OE.24.000A21 Google Scholar
27. Sihvola, A. and I. V. Lindell, "Transmission line analogy for calculating the effective permittivity of mixtures with spherical multilayer scatterers," Journal of Electromagnetic Waves and Applications, Vol. 2, No. 8, 741-756, 1988. Google Scholar
28. Barchiesi, D. and T. Grosges, "Fitting the optical constants of gold, silver, chromium, titanium, and aluminum in the visible bandwidth," Journal of Nanophotonics, Vol. 8, No. 1, 083097, 2014.
doi:10.1117/1.JNP.8.083097 Google Scholar
29. Rakic, A. D., A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied Optics, Vol. 37, No. 22, 5271-5283, 1998.
doi:10.1364/AO.37.005271 Google Scholar
30. Kettunen, H., H. Wallen, and A. Sihvola, "Tailoring effective media by mie resonances of radially-anisotropic cylinders," Photonics, Vol. 2, 509-526, Multidisciplinary Digital Publishing Institute, 2015. Google Scholar