1. Poynting, J. H., "The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 82, No. 5, 560-567, 1909. Google Scholar
2. Beth, R. A., "Mechanical detection and measurement of the angular momentum of light," Physical Review, Vol. 50, No. 2, 115-125, 1936.
doi:10.1103/PhysRev.50.115 Google Scholar
3. Allen, L., M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, "Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes," Physical Review A, Vol. 45, No. 11, 8185-8189, 1992.
doi:10.1103/PhysRevA.45.8185 Google Scholar
4. Chen, R., H. Zhou, M. Moretti, X. Wang, and J. Li, "Orbital angular momentum waves: generation, detection and emerging applications,", arXiv preprint arXiv:1903.07818, Mar. 2019. Google Scholar
5. Thide, B., H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, "Utilization of photon orbital angular momentum in the low-frequency radio domain," Physical Review Letters, Vol. 99, No. 8, 087701-1-087701-4, Aug. 2007.
doi:10.1103/PhysRevLett.99.087701 Google Scholar
6. Durnin, J. J. J. M., J. J. Miceli, Jr, and J. H. Eberly, "Diffraction-free beams," Physical Review Letters, Vol. 58, No. 15, 1499-1501, Apr. 1987.
doi:10.1103/PhysRevLett.58.1499 Google Scholar
7. Barbuto, M., F. Trotta, F. Bilotti, and A. Toscano, "Circular polarized patch antenna generating orbital angular momentum," Progress In Electromagnetics Research, Vol. 148, 23-30, 2014.
doi:10.2528/PIER14050204 Google Scholar
8. Huang, M., X. Zong, and Z. P. Nie, "Horn antenna generating electromagnetic field with orbital angular momentum," Progress In Electromagnetics Research M, Vol. 60, 57-65, 2017.
doi:10.2528/PIERM17030801 Google Scholar
9. Al-Bassam, A., M. A. Salem, and C. Caloz, "Vortex beam generation using circular leaky-wave antenna," IEEE Antennas and Propagation Society International Symposium (APSURSI), 1792-1793, 2014.
doi:10.1109/APS.2014.6905222 Google Scholar
10. Ettorre, M. and A. Grbic, "Generation of propagating Bessel beams using leaky-wave modes," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3605-3613, 2012.
doi:10.1109/TAP.2012.2201088 Google Scholar
11. Lu, P., D. Voyer, A. Br´eard, J. Huillery, B. Allard, X. Lin-Shi, and X. S. Yang, "Design of TEpolarized bessel antenna in microwave range using leaky-wave modes," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 1, 32-41, 2018.
doi:10.1109/TAP.2017.2768584 Google Scholar
12. Dheyab, E. and N. Qasem, "Design and optimization of rectangular microstrip patch array antenna using frequency selective surfaces for 60 GHz," International Journal of Applied Engineering Research, Vol. 11, No. 7, 4679-4687, 2016. Google Scholar
13. Pelin, N., M. H. Salem, E. Niver, and M. A. Salem, "Microwave vortex beam launcher design," IET Journal on Microwaves, Antennas & Propagation, Vol. 12, No. 14, 2149-2153, 2018.
doi:10.1049/iet-map.2018.5007 Google Scholar
14. Mao, F., T. Li, Y. Shao, J. Yang, and M. Huang, "Orbital angular momentum radiation from circular patches," Progress In Electromagnetics Research Letters, Vol. 61, 13-18, 2016.
doi:10.2528/PIERL16012604 Google Scholar
15. Hui, X., S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, "Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas," Scientific Reports, Vol. 5, No. 1, 1-9, 2015.
doi:10.9734/JSRR/2015/14076 Google Scholar
16. Berglind, E. and G. Bjork, "Humblet’s decomposition of the electromagnetic angular moment in metallic waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 4, 779-788, 2014.
doi:10.1109/TMTT.2014.2308891 Google Scholar
17. Alamayreh, A., N. Qasem, and J. Rahhal, "General configuration MIMO system with arbitrary OAM," Electromagnetics, Vol. 40, No. 5, 343-353, 2020.
doi:10.1080/02726343.2020.1780378 Google Scholar
18. Cheng, W., H. Zhang, L. Liang, H. Jing, and Z. Li, "Orbital-angular-momentum embedded massive MIMO: Achieving multiplicative spectrum-efficiency for mmWave communications," IEEE Access, Vol. 6, 2732-2745, 2017. Google Scholar
19. Zheng, S., Y. Chen, Z. Zhang, X. Jin, H. Chi, X. Zhang, and Z. N. Chen, "Realization of beam steering based on plane spiral orbital angular momentum wave," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1352-1358, 2017.
doi:10.1109/TAP.2017.2786297 Google Scholar
20. Cheng, W., W. Zhang, H. Jing, S. Gao, and H. Zhang, "Orbital angular momentum for wireless communications," IEEE Wireless Communications, Vol. 26, No. 1, 100-107, 2018.
doi:10.1109/MWC.2017.1700370 Google Scholar
21. Astley, V., B. McCracken, R. Mendis, and D. M. Mittleman, "Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides," Optics Letters, Vol. 36, No. 8, 1452-1454, 2011.
doi:10.1364/OL.36.001452 Google Scholar
22. Balanis, C. A., Advanced Engineering Electromagnetic, John Wiley & Sons, 1989.
23. Collin, R. E., Foundations for Microwave Engineering, McGraw-Hill, 1966.
24. Fuscaldo, W., G. Valerio, A. Galli, R. Sauleau, A. Grbic, and M. Ettorre, "Higher-order leaky-mode bessel-beam launcher," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 3, 904-913, 2015.
doi:10.1109/TAP.2015.2513076 Google Scholar
25. King, R. W. P., "The loop antenna for transmission and reception," Antenna Theory, Part 1, 1st Edition, Inter-University Electronic Series, Vol. 7, Chap. 11, 458–482, R. E. Collin and F. J. Zucker, ed., McGraw-Hill, New York, 1969. Google Scholar
26. Sutinjo, A., M. Okoniewski, and R. H. Johnston, "Radiation from fast and slow traveling waves," IEEE Antennas and Propagation Magazine, Vol. 50, No. 4, 175-181, 2008.
doi:10.1109/MAP.2008.4653700 Google Scholar
27. Jackson, D. R. and A. A. Oliner, "Leaky-wave antennas," Modern Antenna Handbook, Chap. 7, 325–367, C. Balanis, ed., Wiley, New York, NY, USA, 2008. Google Scholar
28. Knudsen, H. L., "The field radiated by a ring quasi-array of an infinite number of tangential or radial dipoles," Proceedings of the IRE, Vol. 41, No. 6, 781-789, 1953.
doi:10.1109/JRPROC.1953.274261 Google Scholar