1. Vorobyov, S., A. Gershman, and K. Wong, "Maximum likelihood direction-of-arrival estimation in unknown noise fields using sparse sensor arrays," IEEE Trans. Signal Process., Vol. 53, No. 1, 34-43, Jan. 2005.
doi:10.1109/TSP.2004.838966 Google Scholar
2. Wei, Z., W. Wang, B. Wang, P. Liu, and S. Gong, "Effective direction-of-arrival estimation algorithm by exploiting Fourier transform for sparse array," IEICE Trans. Commun., Vol. E102-B, No. 11, 2159-2166, Nov. 2019.
doi:10.1587/transcom.2018EBP3265 Google Scholar
3. Gu, Y. and A. Leshem, "Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation," IEEE Trans. Signal Process., Vol. 60, No. 7, 3881-3885, Jul. 2012. Google Scholar
4. Gu, Y., N. A. Goodman, S. Hong, and Y. Li, "Robust adaptive beamforming based on interference covariance matrix sparse reconstruction," Signal Process., Vol. 96, No. PART B, 375-381, 2014.
doi:10.1016/j.sigpro.2013.10.009 Google Scholar
5. Urco, J. M., J. L. Chau, M. A. Milla, J. P. Vierinen, and T. Weber, "Coherent MIMO to improve aperture synthesis radar imaging of field-aligned irregularities: First results at Jicamarca," IEEE Trans. Geosci. Remote Sens., Vol. 56, No. 5, 2980-2990, May 2018.
doi:10.1109/TGRS.2017.2788425 Google Scholar
6. Wei, Z., X. Li, B. Wang, W. Wang, and Q. Liu, "An efficient super-resolution DOA estimation based on grid learning," Radioengineering, Vol. 28, No. 4, 785-792, Dec. 2019.
doi:10.13164/re.2019.0785 Google Scholar
7. Shi, Z., C. Zhou, Y. Gu, N. A. Goodman, and F. Qu, "Source estimation using coprime array: A sparse reconstruction perspective," IEEE Sens. J., Vol. 17, No. 3, 755-765, Feb. 2017.
doi:10.1109/JSEN.2016.2637059 Google Scholar
8. Wang, B., Y. D. Zhang, and W. Wang, "Robust group compressive sensing for DOA estimation with partially distorted observations," EURASIP J. Adv, Signal Process., Vol. 2016, No. 1, Dec. 2016. Google Scholar
9. Yang, K., Z. Wu, and Q. H. Liu, "Robust adaptive beamforming against array calibration errors," Progress In Electromagnetics Research, Vol. 140, 341-351, 2013.
doi:10.2528/PIER13042203 Google Scholar
10. Baburs, G., D. Caratelli, and A. Mirmanov, "Phased array calibration by binary compressed sensing," Progress In Electromagnetics Research M, Vol. 73, 61-70, 2018. Google Scholar
11. Tuncer, E. and B. Freidlander, Calibration in Array Processing: Classical and Modern Direction-of-arrival Estimation, 1st Ed., Academic Press, 2009.
12. Weiss, A. and B. Friedlander, "Eigenstructure methods for direction finding with sensor gain and phase uncertainties," Circuits Syst. Signal Process., Vol. 9, No. 3, 271-300, 1990.
doi:10.1007/BF01201215 Google Scholar
13. Weiss, A. and B. Friedlander, "DOA and steering vector estimation using a partially calibrated array," IEEE Trans. Aerosp. Electron. Syst., Vol. 32, No. 3, 1047-1057, Jul. 1996.
doi:10.1109/7.532263 Google Scholar
14. Liu, A., G. Liao, C. Zeng, Z. Yang, and Q. Xu, "An eigenstructure method for estimating DOA and sensor gain-phase errors," IEEE Trans. Signal Process., Vol. 59, No. 12, 5944-5956, Dec. 2011.
doi:10.1109/TSP.2011.2165064 Google Scholar
15. Liao, B. and S. C. Chan, "Direction finding with partly calibrated uniform linear arrays," IEEE Trans. Aerosp. Electron. Syst., Vol. 60, No. 2 PART 2, 922-929, Feb. 2012. Google Scholar
16. Koochakzadeh, A. and P. Pal, "Sparse source localization using perturbed arrays via bi-affine modeling," Digital Signal Process., Vol. 61, No. 7, 15-25, Feb. 2017.
doi:10.1016/j.dsp.2016.06.004 Google Scholar
17. Wang, B., Y. D. Zhang, and W. Wang, "Robust DOA estimation in the presence of miscalibrated sensors," IEEE Signal Process Lett., Vol. 24, No. 7, 1073-1077, Jul. 2017.
doi:10.1109/LSP.2017.2708659 Google Scholar
18. Liu, J., W. Zhou, D. Huang, and F. Juwono, "Covariance matrix based fast smoothed sparse DOA estimation with partly calibrated array," AEU Int. J. Electron. Commun., Vol. 84, 8-12, Feb. 2018.
doi:10.1016/j.aeue.2017.10.026 Google Scholar
19. Yang, Z., L. Xie, and C. Zhou, "Off-grid direction of arrival estimation using sparse Bayesian inference," IEEE Trans. Signal Process., Vol. 61, No. 1, 38-43, 2013.
doi:10.1109/TSP.2012.2222378 Google Scholar
20. Zhou, C., Y. Gu, J. Shi, and Y. D. Zhang, "Off-grid direction-of-arrival estimation using coprime array interpolation," IEEE Signal Process Lett., Vol. 25, No. 11, 1710-1714, Nov. 2018.
doi:10.1109/LSP.2018.2872400 Google Scholar
21. Malioutov, D., M. Cetin, and A. S. Willsky, "A sparse signal reconstruction perspective for source localization with sensor arrays," IEEE Trans. Signal Process., Vol. 53, No. 8, 3010-3022, 2005.
doi:10.1109/TSP.2005.850882 Google Scholar
22. Yu, X., J. C. Shen, J. Zhang, and K. B. Letaief, "Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems," IEEE J. Sel. Top. Signal Process., Vol. 10, No. 3, 485-500, Apr. 2016.
doi:10.1109/JSTSP.2016.2523903 Google Scholar
23. Li, J. and P. Stoica, Robust Adaptive Beamforming, 1st Ed., Wiley-Interscience, 2006.
24. Fang, J., F. Wang, Y. Shen, H. Li, and R. S. Blum, "Super-resolution compressed sensing for line spectral estimation: An iterative reweighted approach," IEEE Trans. Signal Process., Vol. 64, No. 18, 4649-4662, Sep. 2016.
doi:10.1109/TSP.2016.2572041 Google Scholar
25. Hu, B., X. Wu, X. Zhang, Q. Yang, and W. Deng, "DOA estimation based on compressed sensing with gain/phase uncertainties," IET Radar Sonar Navig., Vol. 12, No. 11, 1346-1352, Sep. 2018.
doi:10.1049/iet-rsn.2018.5087 Google Scholar