Vol. 99
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-11-22
Self-Calibration Algorithm with Gain-Phase Errors Array for Robust DOA Estimation
By
Progress In Electromagnetics Research M, Vol. 99, 1-12, 2021
Abstract
The performance of direction-of-arrival (DOA) estimation algorithms degrades when a partly calibrated array is adopted due to the existing unknown gain-phase uncertainties. In addition, the spatial discretized searching grid also limits the performance improvement and effectiveness of subspace-based DOA estimation algorithms, especially when the true angles do not lie on the grid points which is referred to the off-grid problem alike. In this paper, a self-calibration DOA estimation algorithm is proposed which solves the array calibration and off-grid problems simultaneously. Firstly, the signal model for a partly calibrated array with gain-phase uncertainties is established. To suppress the off-grid errors, an optimization problem for joint parameters estimation is constructed by substituting the approximation of the steering vector into a newly constructed objective function. The alternative minimization (AM) algorithm is employed to calculate the joint DOA and gain-phase uncertainty estimations. Within each iteration step of the optimization problem, a closed-form solution is derived that guarantees the convergence of the proposed algorithm. Furthermore, the Cramer-Rao bound (CRB) for the partly calibrated arrays with unknown gain-phase uncertainties is also derived and analyzed in the paper. Simulation results demonstrate the effectiveness of the proposed algorithm.
Citation
Zhenyu Wei, Wei Wang, Fuwang Dong, and Ping Liu, "Self-Calibration Algorithm with Gain-Phase Errors Array for Robust DOA Estimation," Progress In Electromagnetics Research M, Vol. 99, 1-12, 2021.
doi:10.2528/PIERM20090701
References

1. Vorobyov, S., A. Gershman, and K. Wong, "Maximum likelihood direction-of-arrival estimation in unknown noise fields using sparse sensor arrays," IEEE Trans. Signal Process., Vol. 53, No. 1, 34-43, Jan. 2005.
doi:10.1109/TSP.2004.838966

2. Wei, Z., W. Wang, B. Wang, P. Liu, and S. Gong, "Effective direction-of-arrival estimation algorithm by exploiting Fourier transform for sparse array," IEICE Trans. Commun., Vol. E102-B, No. 11, 2159-2166, Nov. 2019.
doi:10.1587/transcom.2018EBP3265

3. Gu, Y. and A. Leshem, "Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation," IEEE Trans. Signal Process., Vol. 60, No. 7, 3881-3885, Jul. 2012.

4. Gu, Y., N. A. Goodman, S. Hong, and Y. Li, "Robust adaptive beamforming based on interference covariance matrix sparse reconstruction," Signal Process., Vol. 96, No. PART B, 375-381, 2014.
doi:10.1016/j.sigpro.2013.10.009

5. Urco, J. M., J. L. Chau, M. A. Milla, J. P. Vierinen, and T. Weber, "Coherent MIMO to improve aperture synthesis radar imaging of field-aligned irregularities: First results at Jicamarca," IEEE Trans. Geosci. Remote Sens., Vol. 56, No. 5, 2980-2990, May 2018.
doi:10.1109/TGRS.2017.2788425

6. Wei, Z., X. Li, B. Wang, W. Wang, and Q. Liu, "An efficient super-resolution DOA estimation based on grid learning," Radioengineering, Vol. 28, No. 4, 785-792, Dec. 2019.
doi:10.13164/re.2019.0785

7. Shi, Z., C. Zhou, Y. Gu, N. A. Goodman, and F. Qu, "Source estimation using coprime array: A sparse reconstruction perspective," IEEE Sens. J., Vol. 17, No. 3, 755-765, Feb. 2017.
doi:10.1109/JSEN.2016.2637059

8. Wang, B., Y. D. Zhang, and W. Wang, "Robust group compressive sensing for DOA estimation with partially distorted observations," EURASIP J. Adv, Signal Process., Vol. 2016, No. 1, Dec. 2016.

9. Yang, K., Z. Wu, and Q. H. Liu, "Robust adaptive beamforming against array calibration errors," Progress In Electromagnetics Research, Vol. 140, 341-351, 2013.
doi:10.2528/PIER13042203

10. Baburs, G., D. Caratelli, and A. Mirmanov, "Phased array calibration by binary compressed sensing," Progress In Electromagnetics Research M, Vol. 73, 61-70, 2018.

11. Tuncer, E. and B. Freidlander, Calibration in Array Processing: Classical and Modern Direction-of-arrival Estimation, 1st Ed., Academic Press, 2009.

12. Weiss, A. and B. Friedlander, "Eigenstructure methods for direction finding with sensor gain and phase uncertainties," Circuits Syst. Signal Process., Vol. 9, No. 3, 271-300, 1990.
doi:10.1007/BF01201215

13. Weiss, A. and B. Friedlander, "DOA and steering vector estimation using a partially calibrated array," IEEE Trans. Aerosp. Electron. Syst., Vol. 32, No. 3, 1047-1057, Jul. 1996.
doi:10.1109/7.532263

14. Liu, A., G. Liao, C. Zeng, Z. Yang, and Q. Xu, "An eigenstructure method for estimating DOA and sensor gain-phase errors," IEEE Trans. Signal Process., Vol. 59, No. 12, 5944-5956, Dec. 2011.
doi:10.1109/TSP.2011.2165064

15. Liao, B. and S. C. Chan, "Direction finding with partly calibrated uniform linear arrays," IEEE Trans. Aerosp. Electron. Syst., Vol. 60, No. 2 PART 2, 922-929, Feb. 2012.

16. Koochakzadeh, A. and P. Pal, "Sparse source localization using perturbed arrays via bi-affine modeling," Digital Signal Process., Vol. 61, No. 7, 15-25, Feb. 2017.
doi:10.1016/j.dsp.2016.06.004

17. Wang, B., Y. D. Zhang, and W. Wang, "Robust DOA estimation in the presence of miscalibrated sensors," IEEE Signal Process Lett., Vol. 24, No. 7, 1073-1077, Jul. 2017.
doi:10.1109/LSP.2017.2708659

18. Liu, J., W. Zhou, D. Huang, and F. Juwono, "Covariance matrix based fast smoothed sparse DOA estimation with partly calibrated array," AEU Int. J. Electron. Commun., Vol. 84, 8-12, Feb. 2018.
doi:10.1016/j.aeue.2017.10.026

19. Yang, Z., L. Xie, and C. Zhou, "Off-grid direction of arrival estimation using sparse Bayesian inference," IEEE Trans. Signal Process., Vol. 61, No. 1, 38-43, 2013.
doi:10.1109/TSP.2012.2222378

20. Zhou, C., Y. Gu, J. Shi, and Y. D. Zhang, "Off-grid direction-of-arrival estimation using coprime array interpolation," IEEE Signal Process Lett., Vol. 25, No. 11, 1710-1714, Nov. 2018.
doi:10.1109/LSP.2018.2872400

21. Malioutov, D., M. Cetin, and A. S. Willsky, "A sparse signal reconstruction perspective for source localization with sensor arrays," IEEE Trans. Signal Process., Vol. 53, No. 8, 3010-3022, 2005.
doi:10.1109/TSP.2005.850882

22. Yu, X., J. C. Shen, J. Zhang, and K. B. Letaief, "Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems," IEEE J. Sel. Top. Signal Process., Vol. 10, No. 3, 485-500, Apr. 2016.
doi:10.1109/JSTSP.2016.2523903

23. Li, J. and P. Stoica, Robust Adaptive Beamforming, 1st Ed., Wiley-Interscience, 2006.

24. Fang, J., F. Wang, Y. Shen, H. Li, and R. S. Blum, "Super-resolution compressed sensing for line spectral estimation: An iterative reweighted approach," IEEE Trans. Signal Process., Vol. 64, No. 18, 4649-4662, Sep. 2016.
doi:10.1109/TSP.2016.2572041

25. Hu, B., X. Wu, X. Zhang, Q. Yang, and W. Deng, "DOA estimation based on compressed sensing with gain/phase uncertainties," IET Radar Sonar Navig., Vol. 12, No. 11, 1346-1352, Sep. 2018.
doi:10.1049/iet-rsn.2018.5087