1. Chew, W. C., J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.
2. Harrington, R. F., Field Computation by Moment Methods, MacMillan, 1968.
3. Lee, J., J. Zhang, and C. C. Lu, "Incomplete LU preconditioning for large scale dense complex linear systems from electromagnetic wave scattering problems," Journal of Computational Physics, Vol. 185, No. 1, 158-175, Feb. 2003.
doi:10.1016/S0021-9991(02)00052-9 Google Scholar
4. Malas, T. and L. Gurel, "Incomplete LU preconditioning with the multilevel fast multipole algorithm for electromagnetic scattering," SIAM Journal on Scientific Computing, Vol. 29, No. 4, 1476-1494, 2007.
doi:10.1137/060659107 Google Scholar
5. Saad, Y. and J. Zhang, "Enhanced multi-level block ILU preconditioning strategies for general sparse linear systems," Journal of Computational and Applied Mathematics, Vol. 130, No. 1, 99-118, 2001.
doi:10.1016/S0377-0427(99)00388-X Google Scholar
6. Lee, J., J. Zhang, and C. C. Lu, "Sparse inverse preconditioning of multilevel fast multipole algorithm for hybrid integral equations in electromagnetics," IEEE Trans. Antennas Propag., Vol. 52, No. 9, 2277-2287, Sep. 2004.
doi:10.1109/TAP.2004.834084 Google Scholar
7. Rui, P. L. and R. S. Chen, "An efficient sparse approximate inverse preconditioning for FMM implementation," Microwave Opt. Technol. Lett., Vol. 49, No. 7, 1746-1750, Jul. 2007.
doi:10.1002/mop.22538 Google Scholar
8. Carpentieri, B., I. S. Duff, and L. Giraud, "Sparse pattern selection strategies for robust Frobenius-norm minimization preconditioners in electromagnetism," Numer. Linear Algebra Appl., Vol. 7, 667-685, 2000.
doi:10.1002/1099-1506(200010/12)7:7/8<667::AID-NLA218>3.0.CO;2-X Google Scholar
9. Malas, T. and L. Gurel, "Accelerating the multilevel fast multipole algorithm with the sparse-approximate-inverse (SAI) preconditioning," SIAM Journal on Scientific Computing, Vol. 31, No. 3, 1968-1984, 2009.
doi:10.1137/070711098 Google Scholar
10. Carpentieri, B., "Algebraic preconditioners for the Fast Multipole Method in electromagnetic scattering analysis from large structures: Trends and problems," Electronic Journey of Boundary Elements, Vol. 7, No. 1, 13-49, Mar. 2009. Google Scholar
11. Delgado, C., E. Garcıa, A. Somolinos, and M. F. Catedra, "Hybrid parallelisation scheme for the application of distributed near-field sparse approximate inverse preconditioners on high-performance computing clusters," IET Microw. Antennas Propag., Vol. 14, No. 4, 320-328, Mar. 2020.
doi:10.1049/iet-map.2019.0789 Google Scholar
12. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 5, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
13. Saad, Y., Iterative Methods for Sparse Linear Systems, 2nd Ed., SIAM, 2003.
doi:10.1137/1.9780898718003