1. IMT Vision — Framework and Overall Objectives of the Future Development of IMT for 2020 and beyond, 2015.
2. Morley, D., 5G small cells and cable: Realizing the opportunity, Shaw Communications Inc/Freedom Mobile, Alberta, Technical Report October 2018, 2018.
3. Al, E., M. Ismail, R. Nordin, and N. F. Abdulah, "Beamforming techniques for massive MIMO systems in 5G: Overview, classification, and trends for future research," Frontiers of Information Technology & Electronic Engineering, Vol. 18, 753-772, 2017.
doi:10.1631/FITEE.1601817 Google Scholar
4. Anritsu Ten 5G Challenges for Engineers to Overcome, 8, ed.: Anritsu, 2018.
5. Joseph, M., O. Tobi, and G. A. Igwue, "Development of a new adaptive beam-forming technique for smart antenna system," International Journal of Computer Applications (0975–8887), Vol. 178, No. 11, 2019. Google Scholar
6. Mr, K. M., A. V. R. Holla, and H. M. Guruprasad, "Simulation of reduced complexity beamforming algorithms for mobile communication," International Journal of Innovative Technology and Exploring Engineering (IJITEE), Vol. 1, No. 2, 2012. Google Scholar
7. Waghmare, P., P. Gupta, K. Gehlod, A. Shakya, and L. Malviya, "2 × 2 wideband array MIMO antenna for 5G spectral band," 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), Bombay, India, 2019. Google Scholar
8. Chu, S., M. N. Hasan, J. Yan, and C. C. Chu, "Tri-band 2 × 2 5G MIMO antenna array," 2018 Asia-Pacific Microwave Conference (APMC), 2018. Google Scholar
9. Yashchyshyn, Y., et al., "28GHz switched-beam antenna based on S-PIN diodes for 5G mobile communications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 2, 2018.
doi:10.1109/LAWP.2017.2781262 Google Scholar
10. Abbas, E. A., M. Ikram, and A. Abbosh, "Dual functional MIMO antenna system for mmWave 5G and 2 GHz 4G communications," IEEE International Symposium on Antennas and Propagation, Atlanta, July 7–12, 2019. Google Scholar
11. Khalid, M., et al., "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 71, 2020. Google Scholar
12. I. NTT DOCOMO 5G Evolution and 6G, ed.: NTT DOCOMO, INC., 2020.
13. Rappaport, T. S., et al., "Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond," IEEE Access, Vol. 7, 78729-78757, 2019.
doi:10.1109/ACCESS.2019.2921522 Google Scholar
14. Rappaport, T. S., Y. Xing, J. George, R. MacCartney, A. F. Molisch, E. Mellios, and J. Zhang, "Overview of millimeter wave communications for fifth-Generation (5G) wireless networks — With a focus on propagation models," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 18, 2017. Google Scholar
15. Singkang, L. M., K. A. H. Ping, H. Kunsei, K. Senthilkumar, K. Pirapaharan, A. M. A. Haidar, and P. R. P. Hoole, "Model based-testing of spatial and time domain artificial intelligence smart antenna for ultra-high frequency electric discharge detection in digital power substations," Progress In Electromagnetics Research M, Vol. 99, 91-101, 2021.
doi:10.2528/PIERM20090301 Google Scholar
16. Singkang, L. M. B., K. A. H. Ping, and P. R. P. Hoole, "Electric discharges localization for substation fault monitoring using two elements sensor," Journal of Computational and Theoretical Nanoscience, Vol. 17, No. 2–3, 1009-1013, 2020.
doi:10.1166/jctn.2020.8759 Google Scholar
17. Neiman, M. S., "The principle of reciprocity in antenna theory," Proceedings of the IRE, Vol. 31, No. 12, 666-671, 1943.
doi:10.1109/JRPROC.1943.233683 Google Scholar
18. Hamdy, M. N., An Introduction to LTE Smart Base Station Antennas, M. N. Engineering (ed.), 2017.
19. Hoole, P. R., Smart Antennas and Electromagnetic Signal Processing in Advanced Wireless Technology: With Artificial Intelligence Application and Coding, River Publisher, 2020.
20. Pirapaharan, K., H. Kunsei, K. S. Senthilkumar, P. R. P. Hoole, and S. R. H. Hoole, "A single beam smart antenna for wireless communication in highly reflective and narrow environment," International Symposium on Fundamentals of Engineering, 2017. Google Scholar
21. Pirapaharan, K., H. Kunsei, K. S. Senthilkumar, P. R. P. Hoole, and S. R. H. Hoole, "A robust, 3-element triangular, reflector-less, single beam adaptive array antenna for cognitive radio network: Inter-element distance dependent beam," Journal of Telecommunication, Electronic and Computer Engineering, Vol. 8, No. 12, 4, 2016. Google Scholar
22. Zhang, J., S. Zhang, X. Lin, Y. Fan, and G. F. Pedersen, "3D radiation pattern reconfigurable phased array for transmission angle sensing in 5G mobile communication," Sensor, Vol. 18, No. 4204, 2018. Google Scholar
23. You, X., C. Zhang, X. Tan, S. Jin, and H. Wu, "AI for 5G: Research directions and paradigms," SCIENCE CHINA Information Sciences, Vol. 62, 2018. Google Scholar
24. Senthilkumar, K. S., et al., "A review of a single neuron weight optimization model for adaptive beam forming," Journal of Telecommunication, Electronic and Computer Engineering (JTEC), Vol. 9, No. 3–10, 2017. Google Scholar